DAPTO HIGH SCHOOL 2007

YEAR 11
HALF-YEARLY EXAMINATION

Mathematics

Extension 1

General Instructions

* \quad Reading Time - 5 minutes
* Working Time - 1 ½ hours
* Total Marks - 100 marks
* All questions are of equal value
* Write using a blue or black pen
* Approved calculators may be used
* All necessary working should be shown for every question
* Begin each question on a fresh sheet of paper
* Write on only one side of the paper

Question 1

1. Find the exact value of $x-\frac{1}{x}$ when $x=2 \sqrt{3}+1$
2. Simplify: $\frac{2}{x-3}-\frac{4}{x+2}-\frac{1}{x^{2}-x-6}$
3. Solve: $\frac{x+3}{x-1}<2$
4. Solve simultaneously: $\quad \begin{array}{r}a+b+c=0 \\ a-b+c\end{array}=6$

$$
4 a-2 b+c=15
$$

Question 2

Circle Geometry

1. Find the values of x and y. Show reasons

2. Chord $\mathrm{AB}=5.8 \mathrm{~cm}, \mathrm{CB}=3.1 \mathrm{~cm}$ and CD is a tangent to the circle.

Find the length of CD (correct to one decimal place).

3. In the circle with centre $\mathrm{O}, \angle O C D=\theta$,
(a) find $\angle A O D$
(b) find $\angle B C O$
(c) show that arc $\mathrm{AD}=\operatorname{arc} \mathrm{BC}$

4. In the intersecting circles,
$\angle B C D=70^{\circ}$ and $\angle C D E=95^{\circ}$.
(a) Find $\angle B A F$
(b) Find $\angle A F E$
(c) Hence, or otherwise, prove that $A F \| C D$

Question 3

Functions and Graphs

1. Find the value of x for which $f(x)=8$ given that $f(x)=3 x-10$
2.

$$
\begin{array}{lll}
& 2 x & \text { if } x \geq 3 \\
g(x)=1 & \text { if }-1<x<3 \\
& x^{3}-4 \quad \text { if } x \leq-1
\end{array}
$$

Find the value of $g(5)-g(2)-g(-2)$.
4. Sketch the following, showing all relevant features:
(a) $y=|x|-2$
(b) $y=x-x^{2}$
(c) $f(x)=-\sqrt{16-x^{2}}$
(d) $g(x)=\frac{1}{x-4}$
(e) $y=-2^{x}$
(f) $y=\frac{1}{x^{2}}$
5. State the domain and range of the following:
(a) $y=|x|$
(b) $x^{2}+y^{2}=9$
(c) $y=\sqrt{2 x+8}$
(d) $f(x)=x^{2}-7$
(e) $x y=-2$
6. Sketch the region defined by:
(a) $x<5,2 x+3 y<6$
(b) $y \geq x^{2}, x<2$

Question 4

Locus and the Circle

1. Find the locus of a point $P(x, y)$ that moves such that it is always equidistant from two fixed points, $\mathrm{A}(3,-1)$ and $\mathrm{B}(-4,2)$.
2. Find the equation of the locus of the point $P(x, y)$ that moves so that the line PA is perpendicular to the line PB , where A is $(1,3)$ and B is $(-2,4)$.
3. Point $P(x, y)$ moves so that $\mathrm{PA}^{2}+\mathrm{PB}^{2}=10$ where A and B are $(2,0)$ and $(-2,0)$ respectively. Find the equation of the locus and sketch it on a number plane.
4. Find the equation of the circle with centre $(3,-4)$ and radius 5 units.
5. Find the centre and radius of the circle with equation $x^{2}+y^{2}+4 x+2 y+1=0$.

Question 5

1. Find:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-4 x+3}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x+1}{x^{2}+3}$
2. (a) Given that $f(x)=x^{2}+3 x$, find $f(x+h)$.
(b) Hence find $f^{\prime}(x)$ from first principles.
3. Find the derivative of: (a) $3 x^{4}+2 x^{3}-4 x+5$
(b) $\sqrt[5]{x}$
(c) $\frac{3}{x^{6}}$
(d) $(x+3)(2 x-1)$
(e) $(4 x-5)^{7}$
(f) $\frac{5 x^{3}}{2 x-3}$
(g) $x^{5}\left(9 x^{2}+7\right)^{6}$
4. Given that $g(x)=x^{4}-3 x$, find the value of $g^{\prime}(-2)$
5. Find the equation of the normal to the curve $f(x)=x^{3}-7 x$ at the point $(2,-6)$

Question 6

Trigonometry

1. A ship sails from port (P) on a bearing of 200° for 82 km . How far west of the port is the ship (to the nearest kilometre)?
2. The angle of depression from the top of a 350 m building to a car is $72^{\circ} 14^{\prime}$. How far is the car from the building (to 2 decimal places)?
3. A 53.7 m building casts a shadow 109.3 m long at a certain time of day. What is the angle of elevation that the shadow makes with the top of the building at the time (in degrees and minutes)?
4. Prove that $\cot \theta+\tan \theta=\operatorname{cosec} \theta \cdot \sec \theta$
5. Find the value of b if $\sin \left(20^{\circ}+2 b\right)=\operatorname{cosec}\left(b+10^{\circ}\right)$
6. Find the exact value of: (a) $\cos 150^{\circ}$
(b) $\tan 300^{\circ}$
(c) $\tan \left(-135^{\circ}\right)$
7. If $\tan \theta=-\frac{3}{4}$ and $\cos \theta<0$, find $\sin \theta$ as rational number.
8. Find the value of x correct to 3 significant figures.

9. Find the size of the largest angle to the nearest degree.

10. Two cars leave an intersection at the same time, one travelling at $60 \mathrm{~km} / \mathrm{h}$ along one road and the other car travelling at $80 \mathrm{~km} / \mathrm{h}$ along the other road. After 3 hours they are 315 km apart.
(a) Draw a diagram to show this information,
(b) At what angle do the roads meet at the intersection (to the nearest minute)?
11. Find the area of triangle OAB where O is the centre of the circle.

Give your answer to the nearest mm^{2}.

