DAPTO HIGH SCHOOL

2008
HSC Preliminary Course
FINAL EXAMINATION

Mathematics - Extension 1

General Instructions

- Reading Time -5 minutes
- Working Time - 2 hours
- Write using a blue or black pen
- Board approved calculators may be use
- All necessary working should be shown for every question
- Begin each question on a fresh sheet of paper

Total marks (87)

- Attempt Questions 1-6
(a) Solve the inequality $\frac{3 x}{3 x-4} \leq 3$
(b) Solve $a-b+c=7$ and $a+2 b-c=-4$ and $3 a-b-c=3$ simultaneously.
(c) Show that the line $x+y+4=0$ is a tangent to the circle $x^{2}+y^{2}=8$.
(d) Find the acute angle between the lines $x+2 y=0$ and $x-3 y=0$.
(e) For the points $\mathrm{A}(-3,-7)$ and $\mathrm{B}(-1,-4)$. Find the coordinates of the point $\mathrm{P}(x, y)$ which divides the interval $A B$ externally in the ratio 4:3.

End of Question 1

(a) In the triangle below, $A B \| F E$ and $\angle F C E=\angle D E B=90^{\circ}$.

i) Prove that $\triangle A B C||\mid \triangle D B E$ and $\triangle A B C|| \mid \triangle F C E$
ii) If $D E: F C=5: 2, F E=3.2 \mathrm{~cm}$ and $C E=2.4 \mathrm{~cm}$, find the length of $A B$
(b) Find the values of w, x, y and z, giving reasons.

Question 2 continues on page 4
(c) The point O is the centre of the circle, TU is a tangent to the circle, contacting the circle at P .

i) Show that $\angle R O P=2 \angle R P T$
ii) Show that $\angle R P T$ and $\angle Q P U$ are complementary
iii) Show that $R P \| S Q$

End of Question 2

(a) Write $\sin \theta+\cos \theta$ in terms of t where $t=\tan \frac{\theta}{2}$. midpoint of the diagonal BD on the face ABCD and N is the midpoint of the edge GF.
i) Calculate the length of the line MH
ii) Find the size of $\angle M H F$ to the nearest minute
iii) Find the size of $\angle M H N$ to the nearest minute

(c) Show that $\sin \left(2 x+30^{\circ}\right)=\sqrt{3} \sin x \cos x+\cos ^{2} x-\frac{1}{2}$.
(e) i) Express $\sqrt{2} \sin x+\cos x$ in the form $r \sin (x+\alpha)$.
ii) Hence or otherwise, solve $\sqrt{2} \sin x+\cos x=1$ for $0^{\circ} \leq x \leq 360^{\circ}$, giving your answer to the nearest minute.

End of Question 3

(a) Find the centre and radius of the circle with equation $x^{2}+8 x+y^{2}-12 y+27=0$.
(b) Differentiate from first principles and find the gradient of the tangent at the curve $y=x^{2}+10$ at $x=3$.
(c) Find:
i) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
ii) $\quad \lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{2}-2 x+3}$
(d) Find the equation of the locus at a point P which moves such that it's distance from the point $\mathrm{A}(2,-3)$ is twice it's distance from the point $B(-4,12)$.

End of Question 4

(a) Express $5 x^{2}+2 x-3$ in the form $A(x+1)^{2}+B(x+1)+\mathrm{c}$
(b) Solve $9^{x}-10\left(3^{x}\right)+9=0$
(c) Find values of k for which $x^{2}+k x+16$ is positive definite.
(d) For the equation $2 x^{2}+x-3=0$ with roots α and β, find the value of:
i) $\alpha+\beta \quad$ 1
ii) $\alpha \beta \quad 1$
iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(e) For the parabola defined by $x^{2}-8 y=0$, find the:
i) Co-ordinates of the vertex 1
ii) Co-ordinates of the focus 1
iii) Equation of the directrix 1
iv) Sketch the parabola 1
(a) Find the derivative of the following: (You do not need to simplify your answers after finding the derivative)
i) $-4 x^{5}-4 x^{3}+11 \quad 1$
ii) $\sqrt[5]{x^{2}}$
iii) $\frac{1}{x+3}$

2
(b) i) Find $f(2)$ for $f(x)=\left(3 x^{2}-5 x\right)^{5}$
ii) If $y=\sqrt{3 x-1}$ find $\frac{d y}{d x}$
iii) Given $y=\frac{x^{2}-1}{x^{2}+1}$
iv) Find $g^{\prime}(x)$ if $g(x)=(2 x+3)^{5}(5 x-1)$
(c) Find the gradient of the curve $y=x^{2}-2$ at $x=4$ and hence find the equation of the tangent to this curve at $x=4$.

End of Question 6

End of Examination

