Actual Formula	Test #1	Test #2	Formula
$(a + b)(a^2 - ab + b^2)$			$a^{3} + b^{3} =$
$(a-b)(a^2+ab+b^2)$			$a^3 - b^3 =$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			Quadratic Formula
f(x) = f(-x)			Test for even functions
f(-x) = -f(x)			Test for odd functions
$(x-h)^2 + (y-k)^2 = r^2$			General equation of a circle
$y = \sqrt{r^2 - x^2}$			Equation of a semi-circle
0			$\lim_{x \ \mathbb{R}} \frac{1}{x} =$
$\frac{1}{\sqrt{2}}$			$\sin\left(\frac{\pi}{4}\right) =$
$\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$			$\cos\left(\frac{\pi}{4}\right) =$
1			$\tan\left(\frac{\pi}{4}\right) =$
$\frac{\sqrt{3}}{2}$			$\sin\left(\frac{\pi}{3}\right) =$
1/2			$\sin\left(\frac{\pi}{6}\right) =$
1/2			$\cos\left(\frac{\pi}{3}\right) =$
$\frac{\sqrt{3}}{2}$			$\cos\left(\frac{\pi}{6}\right) =$

√3	$\tan\left(\frac{\pi}{3}\right) =$
$\frac{1}{\sqrt{3}}$	$\tan\left(\frac{\pi}{6}\right) =$
$\frac{\sin\theta}{\cos\theta}$	tanθ=
$\frac{\cos \theta}{\sin \theta}$	cotθ =
1	$\sin^2\theta + \cos^2\theta =$
$1 + \cot^2 \theta = \csc^2 \theta$	Other trig identity
$\tan^2\theta + 1 = \sec^2\theta$	Other trig identity
$\frac{\sin A}{a} = \frac{\sin B}{b}$	Sine rule
$a^2 = b^2 + c^2 - 2bc\cos A$	Cosine rule for side
$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	Cosine rule for an angle
$A = \frac{1}{2} ab \sin C$	Area of a triangle using trig
	Graphs
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Distance formula
$P = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	Midpoint Formula
$m = \frac{y_2 - y_1}{x_2 - x_1}$	Gradient Formula
$m = \tan \theta$	Gradient using trig

$y-y_1 = m(x-x_1)$	Point-gradient formula
$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$	Two-point formula
$m_1 = m_2$	Parallel lines proof
$m_1 m_2 = -1$	Perpendicular lines proof
$d = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$	Perpendicular distance formula
$\tan\theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	Angle between two lines
$X = \frac{mx_2 + nx_1}{m + n}$	Dividing interval in ratio m:n
$y = \frac{my_2 + ny_1}{m + n}$	Tatio III.II
$\frac{dy}{dx} = \lim_{h \ @ \ 0} \frac{f(x+h) - f(x)}{h}$	First principle differentiation
$n x^{n-1}$	$\frac{d}{dx}x^n$
$f(x)n\left[f(x)\right]^{n-1}$	$\frac{d}{dx}[f(x)]^n =$
νư + uv	$\frac{d}{dx}uv$
$\frac{vu'-uv'}{v^2}$	d/dx v
$x = -\frac{b}{2a}$	Axis of symmetry in quadratic
$\Delta = b^2 - 4ac$	The discriminant
$-\frac{b}{a}$	Sum of roots

<u>c</u> a	Sum of roots two at a time
$-\frac{d}{a}$	Sum of roots three
а	at a time
<u>e</u> a	Sum of roots four at a time
$x^2 = 4ay$	Equation of basic parabola.
(0, a) (0, 0)	Focus Vertex
$(x-h^2) = 4a(y-k)$	General equation of parabola.
(h, k) (h, k + a)	Focus Vertex
x = 2at	Parametric form of:
$y = at^2$	$x^2 = 4ay$
$T_n = a + (n-1)d$	Term of an arithmetic series
$S_n = \frac{n}{2}(a+1)$ $S_n = \frac{n}{2}[2a+(n-1)d]$	Sum of an arithmetic series
$S = (n-2) \times 180^{\circ}$	Sum of interior angles of an n- sided polygon
A = Ib	Area of rectangle
$A = x^2$	Area of a square
$A = \frac{1}{2}bh$	Area of a triangle
A = bh	Area of a parallelogram

$\frac{1}{2}$ xy	Area of rhombus
$A = \frac{1}{2} h(a+b)$	Area of trapezium
$A = \pi r^2$	Area of circle
S = 2(lb + bh + lh)	Surface area of a rectangular prism
V = Ibh	Volume of a rectangular prism
$S = 6x^2$	Surface area of a cube
$V = x^3$	Volume of a cube
$S = 2\pi r^2 + 2\pi r h$	Surface area of a cylinder
$V = \pi r^2 h$	Volume of a cylinder
$S = 4\pi r^2$	Surface area of a sphere
$V = \frac{4}{3}\pi r^3$	Volume of a sphere
$S = \pi r^2 + \pi r l$	Surface area of a cone
$V = \frac{1}{3}\pi r^2 h$	Volume of a cone
$\frac{x^{n+1}}{n+1} + c$	$\int x^n dx$
$\frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$ where $h = \frac{b-a}{n}$	Trapezoidal rule

$\frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_3) + 2(y_2 + y_4)]$ where $h = \frac{b - a}{n}$	Simpson's Rule
$\frac{(ax+b)^{n+1}}{a(n+1)}+c$	$\int (ax+b)^n dx$
$V = \pi \int_{0}^{\infty} y^{2} dx$	Volume about the x-axis
$V = \pi \int_{0}^{2} x^{2} dy$	Volume about the y-axis
e ^x	$\frac{d}{dx}e^{x}$
$f(x) e^{f(x)}$	$\frac{d}{dx}e^{f(x)}$
$e^{x} + c$	$\int e^x dx$
$\frac{1}{a}e^{ax+b}+c$	$\int e^{ax+b} dx$
$\log_a x + \log_a y$	log _a (xy)
$\log_a x - \log_a y$	$\log_a\left(\frac{X}{y}\right)$
n log _a x	$\log_a x^n$
$\log_a x = \frac{\log_e x}{\log_e a}$	Change of base rule
$\frac{1}{x}$	$\frac{d}{dx}\log_e x$
$\frac{f'(x)}{f(x)}$	$\frac{d}{dx}\log_e f(x)$
log _e x+ c	$\int \frac{1}{x} dx$

$\log_e f(x) + c$	$\int \frac{f(x)}{f(x)} dx$
180°	π radians =
$C = 2\pi r$	Circumference of a circle
$I = r\theta$	Length of an arc
$A = \frac{1}{2}r^2\theta$	Area of a sector
$A = \frac{1}{2} r^2 (\theta - \sin \theta)$	Area of a minor segment
sinx » x tanx » x cosx » 1	Small Angles
$f(x) \cos[f(x)]$	$\frac{d}{dx}\sin\left[f(x)\right]$
$-f(x) \sin[f(x)]$	$\frac{d}{dx}\cos\left[f(x)\right]$
$f(x) \sec^2 f(x)$	$\frac{d}{dx}$ tan $f(x)$
$\frac{1}{a}\sin(ax+b) + c$	$\int \cos(ax+b) dx$
$-\frac{1}{a}\cos(ax+b) + c$	$\int \sin(ax+b) dx$
$\frac{1}{a}\tan(ax+b)+c$	$\int \sec^2(ax+b) dx$
$\frac{1}{2}x + \frac{1}{4a}\sin 2ax + c$	$\int \cos^2 ax dx$
$\frac{1}{2}x - \frac{1}{4a}\sin 2ax + c$	$\int \sin^2 ax dx$

$r = \frac{T_2}{T_1}$	Common ratio in geometric series
$T_n = ar^{n-1}$	Term of a geometric series
$S_n = \frac{a(r^n - 1)}{r - 1} \text{ for } r > 1$ $S_n = \frac{a(1 - r^n)}{1 - r} \text{ for } r < 1$	Sum of a geometric series
$S_{\mathbb{Y}} = \frac{a}{1 - r}$	Sum to infinity of a geometric series
$A = P \left(1 + \frac{r}{100} \right)^n$	Compound interest formula
If $f\left(\frac{a+b}{2}\right) = 0$	Halving the interval method
$a_1 = a - \frac{f(a)}{f(a)}$	Newton's method of approximation
$\frac{n!}{(n-r)!}$	$^{n}P_{r} =$
<u>n!</u> s! t!	Arrangements where some are alike
(n-1)!	Arrangements in a circle