Actual Formula	Test \#1	Test \#2	Formula
$(a+b)\left(a^{2}-a b+b^{2}\right)$			$a^{3}+b^{3}=$
$(a-b)\left(a^{2}+a b+b^{2}\right)$			$a^{3}-b^{3}=$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$			Quadratic Formula
$f(x)=f(-x)$			Test for even functions
$f(-x)=-f(x)$			Test for odd functions
$(x-h)^{2}+(y-k)^{2}=r^{2}$			General equation of a circle
$y=\sqrt{r^{2}-x^{2}}$			Equation of a semi-circle
0			$\lim _{x \rightarrow \infty} \frac{1}{x}=$
$\frac{1}{\sqrt{2}}$			$\sin \left(\frac{\pi}{4}\right)=$
$\frac{1}{\sqrt{2}}$			$\cos \left(\frac{\pi}{4}\right)=$
1			$\tan \left(\frac{\pi}{4}\right)=$
$\frac{\sqrt{3}}{2}$			$\sin \left(\frac{\pi}{3}\right)=$
$\frac{1}{2}$			$\sin \left(\frac{\pi}{6}\right)=$
$\frac{1}{2}$			$\cos \left(\frac{\pi}{3}\right)=$
$\frac{\sqrt{3}}{2}$			$\cos \left(\frac{\pi}{6}\right)=$

$\theta=\pi \times n+(-1)^{n} \alpha$		General solution for sine	
$\theta=2 \pi \times n \pm \alpha$		General solution for cosine	
$\theta=\pi \times n+\alpha$		General solution for tan	
\quad		Graphs	
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$			Distance formula
$P=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$		Midpoint Formula	
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$		Gradient Formula	
$m=\tan \theta$		Gradient using trig	
$y-y_{1}=m\left(x-x_{1}\right)$		Point-gradient	
formula			

$\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$			First principle differentiation
$n x^{n-1}$			$\frac{d}{d x} x^{n}$
$f(x) n[f(x)]^{n-1}$			$\frac{d}{d x}[f(x)]^{n}=$
$v u^{\prime}+u v$			$\frac{d}{d x} u v$
$\frac{v u^{\prime}-u v}{v^{2}}$			$\frac{d}{d x} \frac{u}{v}$
$x=-\frac{b}{2 a}$			Axis of symmetry in quadratic
$\Delta=b^{2}-4 a c$			The discriminant
$-\frac{b}{a}$			Sum of roots
$\frac{c}{a}$			Sum of roots two at a time
$-\frac{d}{a}$			Sum of roots three at a time
$\frac{e}{a}$			Sum of roots four at a time
$\begin{gathered} x^{2}=4 a y \\ (0, a) \\ (0,0) \end{gathered}$			Equation of basic parabola. Focus Vertex
$\begin{aligned} & \left(x-h^{2}\right)=4 a(y-k) \\ & (\mathbf{h}, \mathbf{k}) \\ & (\mathbf{h}, \mathbf{k}+\mathbf{a}) \end{aligned}$			General equation of parabola. Focus Vertex
$\begin{aligned} & x=2 a t \\ & y=a t^{2} \end{aligned}$			Parametric form of: $x^{2}=4 a y$

$T_{n}=a+(n-1) d$			Term of an arithmetic series
$\begin{gathered} S_{n}=\frac{n}{2}(a+1) \\ S_{n}=\frac{n}{2}[2 a+(n-1) d] \end{gathered}$			Sum of an arithmetic series
$S=(n-2) \times 180^{\circ}$			Sum of interior angles of an n sided polygon
$A=1 b$			Area of rectangle
$A=x^{2}$			Area of a square
$A=\frac{1}{2} b h$			Area of a triangle
$A=b h$			Area of a parallelogram
$\frac{1}{2} x y$			Area of rhombus
$A=\frac{1}{2} h(a+b)$			Area of trapezium
$A=\pi r^{2}$			Area of circle
$S=2(l b+b h+l h)$			Surface area of a rectangular prism
$V=I b h$			Volume of a rectangular prism
$S=6 x^{2}$			Surface area of a cube
$V=x^{3}$			Volume of a cube
$S=2 \pi r^{2}+2 \pi r h$			Surface area of a cylinder

$f(x) \cos [f(x)]$			$\frac{d}{d x} \sin [f(x)]$
$-f(x) \sin [f(x)]$			$\frac{d}{d x} \cos [f(x)]$
$f(x) \sec ^{2} f(x)$			$\frac{d}{d x} \tan f(x)$
$\frac{1}{a} \sin (a x+b)+c$			$\int \cos (a x+b) d x$
$-\frac{1}{a} \cos (a x+b)+c$			$\int \sin (a x+b) d x$
$\frac{1}{a} \tan (a x+b)+c$			$\int \sec ^{2}(a x+b) d x$
$\frac{1}{2} x+\frac{1}{4 a} \sin 2 a x+c$			$\int \cos ^{2} a x d x$
$\frac{1}{2} x-\frac{1}{4 a} \sin 2 a x+c$			$\int \sin ^{2} a x d x$
			Exponential Growth \& Decay
k Q			$\frac{d Q}{d t}=$
$Q=A e^{k t}$			Quantity
$\begin{aligned} & \frac{d N}{d t}=k(N-P) \\ & N=P+A e^{k t} \end{aligned}$			Complex growth and decay
$a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$			Special result for acceleration
$x=a \cos (n t+\epsilon)$			Displacement for SHM
$\ddot{x}=-n^{2} x$			Acceleration for SHM

$-\tan ^{-1} x$			$\tan ^{-1}(-x)=$
$\frac{\pi}{2}$			$\sin ^{-1} x+\cos ^{-1} x=$
$r=\frac{T_{2}}{T_{1}}$			Common ratio in geometric series
$T_{n}=a r^{n-1}$			Term of a geometric series
$\begin{aligned} & S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \text { for }\|r\|>1 \\ & S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { for }\|r\|<1 \end{aligned}$			Sum of a geometric series
$S_{\infty}=\frac{a}{1-r}$			Sum to infinity of a geometric series
$A=P\left(1+\frac{r}{100}\right)^{n}$			Compound interest formula
If $f\left(\frac{a+b}{2}\right)=0$			Halving the interval method
$a_{1}=a-\frac{f(a)}{f(a)}$			Newton's method of approximation
$\frac{\mathbf{n}-\mathbf{k}+1}{\mathbf{k}} \times \frac{\mathbf{b}}{\mathbf{a}}$			$\frac{T_{K+1}}{T_{K}}=$
$\frac{n!}{(n-r)!}$			${ }^{n} P_{r}=$
$\frac{n!}{s!t!\ldots}$			Arrangements where some are alike
$(n-1)$!			Arrangements in a circle

