ADVANCED EXTENSION 1 TOPICS

MATHEMATICAL INDUCTION

1. If $u_{1}=7$ and $u_{n}=2 u_{n-1}-1$ for $n \geq 2$, show by induction that $u_{n}=3 \times 2^{n}+1$ for $n \geq 1$.
2. If $u_{1}=5, u_{2}=11$ and $u_{n}=4 u_{n-1}-3 \mathrm{u}_{n-2}$ for $n \geq 3$, show by induction that $u_{n}=2+3^{n}$ for $n \geq 1$.
3. If $u_{1}=8, u_{2}=20$ and $u_{n}=4 u_{n-1}-4 u_{n-2}$ for $n \geq 3$, show by induction that $u_{n}=(\mathrm{n}+3) 2^{n}$ for $n \geq 1$.
4. If $u_{1}=7, u_{2}=29$ and $u_{n}=7 u_{n-1}-10 \mathrm{u}_{n-2}$ for $n \geq 3$, show by induction that $u_{n}=2^{n}+5^{n}$ for $n \geq 1$.
5. If $u_{1}=5$ and $u_{n}=3 u_{n-1}+2$ for $n \geq 2$, show by induction that $u_{n}=2 \times 2^{n}-1$ for $n \geq 1$.

PROPERTIES OF INTEGRALS

1. Find the integral of the function $f(x)$ on the stated interval
(a) between 0 and 5 if $f(x)=x+2$ if $0 \leq x \leq 2$

$$
=4 \quad \text { if } 2<x \leq 5
$$

(b) between 0 and 2 if $f(x)=|x-1|$
(c) between $-\pi$ and π if $f(x)=|\sin x|$
(d) between $-\pi$ and π if $f(x)=\cos x$ if $-\pi \leq x \leq 0$

$$
=x \quad \text { if } 0<x<\pi
$$

2. The graph of the function
$f(t)=1-t$, for $0 \leq t \leq 2$
$=t-3$, for $2<t \leq 5$
is shown in the diagram.

The function $h(x)$ is defined as $\int_{0}^{x} f(t) d t, 0 \leq x \leq 5$
(a) Find the function $h(x)$ over the intervals $0 \leq x \leq 2$ and $2<x \leq 5$
(b) Find all the turning points of the function $h(x)$ and hence sketch it
(c) Find $\int_{0}^{5} f(x) d x$
(d) Find the area between the curve $y=h(x)$, the x axis for $0 \leq x \leq 5$
3. Sketch the function $f(x)$ and prove the following inequalities
(a) $\quad f(x)=\frac{1}{x}$
$1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1} \geq \log _{e} n$
(b) $\quad f(x)=\frac{1}{\sqrt{x}}$
$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}} \leq 2(\sqrt{n}-1)$
(c) $f(x)=\sqrt{x} \quad \sqrt{1}+\sqrt{2}+\ldots+\sqrt{n} \geq \int_{0}^{n} x d x=2 / 3 n \sqrt{n}$
(d) $f(x)=x^{2} \quad 1^{2}+2^{2}+\ldots+(n-1)^{2} \leq \frac{n^{3}}{3} \leq 1^{2}+2^{2}+\ldots+n^{2}$

POLYNOMIALS

1. Express $\cos 5 \theta$ as a polynomial in $\cos \theta$, and obtain a similar expression for $\sin 5 \theta$ as a polynomial in $\sin \theta$.
(a) Solve the equation $\cos 5 \theta=1$ for $0<\theta 2 \pi$ and hence find the roots of the equation $16 x^{5}-20 x^{3}+5 x-1=0$. Hence prove that $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}$ and $\cos \frac{\pi}{5}-\cos \frac{2 \pi}{5}=\frac{1}{2}$.
(b) Solve the equation $\cos 5 \theta=0$ for $0<\theta 2 \pi$ and hence find the roots of the equation $16 x^{4}-20 x^{5}+5=0$. Determine the exact value for $\cos \frac{\pi}{10} \cos \frac{3 \pi}{10}$ and $\cos ^{2} \frac{\pi}{10}-\cos ^{2} \frac{3 \pi}{10}$.
(c) Solve the equation $\sin 5 \theta=1$ for $0<\theta 2 \pi$ and hence find the roots of the equation $16 x^{4}+16 x^{3}-4 x^{2}-4 x+1=0$. Determine the exact value of $\sin \frac{\pi}{10} \sin \frac{3 \pi}{10}$.
(d) Show that the roots of the equation $16 x^{4}-20 x^{2}+5=0$ are $x= \pm \sin \frac{\pi}{5} \sin \frac{2 \pi}{5}$.and prove that $\sin ^{2} \frac{\pi}{5}$ $\sin ^{2} \frac{2 \pi}{5}=\frac{5}{4}$.
2. Prove that $\cos 7 \theta=64 \cos ^{7} \theta-112 \cos ^{5} \theta-7 \cos \theta$.
(a) Hence find the roots of the equation $64 x^{6}-112 x^{4}+56 x^{2}-7=0$. Deduce that $\cos \frac{\pi}{14} \cdot \cos \frac{3 \pi}{14} \cdot \cos \frac{5 \pi}{14}=\frac{\sqrt{7}}{8}$ and $\cos ^{2} \frac{\pi}{14}+\cos ^{2} \frac{3 \pi}{14}+\cos ^{2} \frac{5 \pi}{14}=\frac{7}{8}$.
(b) Solve the equation $\cos 7 \theta=1$ for $0<\theta 2 \pi$, and hence find the roots of the equation $64 x^{7}-112 x^{5}+56 x^{3}-7=1$. Deduce that $\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}=\frac{1}{2}$ and $\cos \frac{\pi}{7} \cdot \cos \frac{\pi}{7} \cdot \cos \frac{5 \pi}{7}=-\frac{5}{4}$.
