ADVANCED EXTENSION 1 TOPICS

MATHEMATICAL INDUCTION

- 1. If $u_1 = 7$ and $u_n = 2u_{n-1} 1$ for $n \ge 2$, show by induction that $u_n = 3 \times 2^n + 1$ for $n \ge 1$.
- 2. If $u_1 = 5$, $u_2 = 11$ and $u_n = 4u_{n-1} 3u_{n-2}$ for $n \ge 3$, show by induction that $u_n = 2 + 3^n$ for $n \ge 1$.
- 3. If $u_1 = 8$, $u_2 = 20$ and $u_n = 4u_{n-1} 4u_{n-2}$ for $n \ge 3$, show by induction that $u_n = (n + 3)2^n$ for $n \ge 1$.
- 4. If $u_1 = 7$, $u_2 = 29$ and $u_n = 7u_{n-1} 10u_{n-2}$ for $n \ge 3$, show by induction that $u_n = 2^n + 5^n$ for $n \ge 1$.
- 5. If $u_1 = 5$ and $u_n = 3u_{n-1} + 2$ for $n \ge 2$, show by induction that $u_n = 2 \times 2^n 1$ for $n \ge 1$.

PROPERTIES OF INTEGRALS

- 1. Find the integral of the function f(x) on the stated interval (a) between 0 and 5 if f(x) = x + 2 if $0 \le x \le 2$
 - =4 if $2 < x \le 5$
 - (b) between 0 and 2 if f(x) = |x 1|
 - (c) between $-\pi$ and π if $f(x) = |\sin x|$
 - (d) between $-\pi$ and π if $f(x) = \cos x$ if $-\pi \le x \le 0$ = x if $0 < x < \pi$
- 2. The graph of the function
 - $f(t) = 1 t, \text{ for } 0 \le t \le 2$ = t - 3, for 2 < t \le 5 is shown in the diagram.

The function h(x) is defined as $\int_0^x f(t) dt$, $0 \le x \le 5$

- (a) Find the function h(x) over the intervals $0 \le x \le 2$ and $2 \le x \le 5$
- (b) Find all the turning points of the function h(x) and hence sketch it
- (c) Find $\int_0^5 f(x) dx$
- (d) Find the area between the curve y = h(x), the x axis for $0 \le x \le 5$
- 3. Sketch the function f(x) and prove the following inequalities

(a)
$$f(x) = \frac{1}{x}$$
 $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} \ge \log_e n$

(b)
$$f(x) = \frac{1}{\sqrt{x}}$$
 $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2(\sqrt{n} - 1)$

(c)
$$f(x) = \sqrt{x}$$
 $\sqrt{1} + \sqrt{2} + \dots + \sqrt{n} \ge \int_0^n x \, dx = \frac{2}{3}n\sqrt{n}$

(d)
$$f(x) = x^2$$
 $1^2 + 2^2 + \dots + (n-1)^2 \le \frac{n^3}{3} \le 1^2 + 2^2 + \dots + n^2$

POLYNOMIALS

- 1. Express $\cos 5\theta$ as a polynomial in $\cos \theta$, and obtain a similar expression for $\sin 5\theta$ as a polynomial in $\sin \theta$.
 - (a) Solve the equation $\cos 5\theta = 1$ for $0 < \theta 2\pi$ and hence find the roots of the equation $16x^5 20x^3 + 5x 1 = 0$. Hence prove that $\cos \frac{\pi}{5} \cos \frac{2\pi}{5} = \frac{1}{4}$ and $\cos \frac{\pi}{5} \cos \frac{2\pi}{5} = \frac{1}{2}$.
 - (b) Solve the equation $\cos 5\theta = 0$ for $0 < \theta 2\pi$ and hence find the roots of the equation $16x^4 20x^5 + 5 = 0$. Determine the exact value for $\cos \frac{\pi}{10} \cos \frac{3\pi}{10}$ and $\cos^2 \frac{\pi}{10} \cos^2 \frac{3\pi}{10}$. (c) Solve the equation $\sin 5\theta = 1$ for $0 < \theta 2\pi$ and hence find the roots of the equation
 - (c) Solve the equation $\sin 5\theta = 1$ for $0 < \theta 2\pi$ and hence find the roots of the equation $16x^4 + 16x^3 4x^2 4x + 1 = 0$. Determine the exact value of $\sin \frac{\pi}{10} \sin \frac{3\pi}{10}$.
 - (d) Show that the roots of the equation $16x^4 20x^2 + 5 = 0$ are $x = \pm \sin \frac{\pi}{5} \sin \frac{2\pi}{5}$ and prove that $\sin^2 \frac{\pi}{5} \sin^2 \frac{2\pi}{5} = \frac{5}{4}$.
- 2. Prove that $\cos 7\theta = 64\cos^7\theta 112\cos^5\theta 7\cos\theta$.
 - (a) Hence find the roots of the equation $64x^6 112x^4 + 56x^2 7 = 0$. Deduce that $\cos \frac{\pi}{14} \cdot \cos \frac{3\pi}{14} \cdot \cos \frac{5\pi}{14} = \frac{\sqrt{7}}{8}$ and $\cos^2 \frac{\pi}{14} + \cos^2 \frac{3\pi}{14} + \cos^2 \frac{5\pi}{14} = \frac{7}{8}$. (b) Solve the equation $\cos 7\theta = 1$ for $0 < \theta 2\pi$, and hence find the roots of the equation
 - (b) Solve the equation $\cos 7\theta = 1$ for $0 < \theta 2\pi$, and hence find the roots of the equation $64x^7 112x^5 + 56x^3 7 = 1$. Deduce that $\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = \frac{1}{2}$ and $\cos \frac{\pi}{7} \cdot \cos \frac{\pi}{7} = -\frac{5}{4}$.