COMPLEX NUMBERS

EXERCISE 1

1. Solve for z, expressing answers in the form $a+i b$.
(a) $(1+i) z=2-i$
(b) $\frac{2 z}{2+i}+3-2 i=(1-i) z$
(c) $\frac{2}{z}=1+i+\frac{3}{1-i}$
(d) $\frac{z+3}{z-1}=2-3 i$
2. Find the quadratic equation with roots
(a) $i,-i$
(b) $1+i, 1-i$
(c) $2+3 i, 2-3 i$
(d) $3+i, 1+3 i$
(e) $2+i, \frac{1}{2+i}$
3. \quad Solve for z and w
(a) $z+i w=2+3 \mathrm{i}$
(b) $2 x+w=1+i$
$z-i w=2-3 \mathrm{i}$
$z-w=1-i$
(c) $(2+i) z+(2-i) w=1$
(d) $z+(1-i) w=2 i$
$(2-i) z+(2+i) w=2$
$w+(1-i) z=1$
4. Show that $x=i$ is a root of the equation $x^{3}+(1-i) x^{2}+(1-2 i) x=1+i$
5. If $x=1+i$ is a root of $x^{3}+a x+4=0$, show that $a=-2$
6. If $\sqrt{x}+i y=a+i b$ where $x, y, a, \mathrm{~b}$ are real and $a>0$, provate that $a^{2}-b^{2}=x$ and $2 a b=y$.

Hence express the square root of the following in the form $a+i b$
(a) $5+2 i$
(b) $21-20 i$
(c) i
(d) $-11-60 i$

EXERCISE 2

1. If ω is a complex cube root of unity (ie a root of $z^{3}=1$), prove that ω^{2} is also a complex cube root of unity. Further prove that:
(a) $1+\omega+\omega^{2}=0$
(b) $\frac{1}{1+\omega}+\frac{1}{1+\omega^{2}}=1$
(c) $(1+\omega)^{3}=-1$
(d) $\left(1+\omega^{2}\right)^{5}=-\omega^{2}$
2. ω is a complex root of the equation $z^{3}-1=0$. Form a quadratic equation whose roots are given by $\alpha=2+\omega$ and $\beta=2+\omega^{2}$.
3. If ω is the complex cube root of unity, show that
(a) $\left(1+\omega-\omega^{2}\right)-\left(1-\omega+\omega^{2}\right)^{3}=0$
(b) $\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}=\omega^{2}$
(c) $\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}=\omega$
4. If $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$, where $1, \omega, \omega^{2}$ are the other roots of unity, prove that
(a) $x+y+z=0$
(b) $\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)=a^{2}+b^{2}+c^{2}-a b-b c-c a$
5. If $1, \omega, \omega^{2}$ are the three cube roots of unity, prove that
$(a+b+c)\left(a-b \omega+c \omega^{2}\right)\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)=a^{3}+b^{3}+c^{3}-3 a b c$
6. If ω is complex root of $z^{5}-1=0$, show that $\omega^{2}, \omega^{3}, \omega^{4}$ are the other complex roots.
(a) Prove that $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}=0$
(b) Find the quadratic equation whose roots are $\alpha=\omega+\omega^{4}$ and $\beta=\omega^{2}+\omega^{3}$
(c) Show the roots of $z^{5}-1=0$ on an Argand diagram
(d) Find the area of the pentagon formed by the roots (to $2 \mathrm{dec} . \mathrm{Pl}$)
7. If ω is a complex root of $z^{6}-1=0$ then show that the other roots are $\omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}$. Prove that
(a) $1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}=0$
(b) Find all the roots in the form $a+i b$ and indicate these roots in an Argand diagram.

Find the area of the hexagon formed by the roots.
(c) Find the quadratic equation whose roots are
(i) ω and ω^{5}
(ii) ω^{2} and ω^{4}
(d) Show that
(i) $z^{6}-1=\left(z^{2}-1\right)\left(z^{2}+z+1\right)\left(z^{2}-z+1\right)$

$$
=(z-1)(z+1)(z-\omega)\left(z-\omega^{5}\right)\left(z-\omega^{2}\right)\left(z-\omega^{4}\right)
$$

(ii) The roots of $z^{4}+z^{2}+1=0$ are $\omega, \omega^{2}, \omega^{4}$ and ω^{5}

EXERCISE 3

1. If $z_{1}=2+3 i, z_{2}=-1+4 i$, show on separate Argand diagrams
(a) z_{1}
(b) z_{2}
(c) $z_{1}+z_{2}$
(d) $z_{1}-z_{2}$
(e) $z_{2}-z_{1}$
(f) $z_{1} z_{2}$
(g) $i z_{1}$
(h) $i z_{2}$
2. Show on separate Argand diagrams the points representing
(a) $2-i$
(b) $3+4 i$
(c) $(2-i)+(3+4 i)$
(d) $(2-i)-(3+4 i)$
(e) $(2-i)(3+4 i)$
(f) $i(2-i)$
(g) $i(3+4 i)$
3. Verify the triangle inequalities, $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$ when
(a) $z_{1}=2+3 i, z_{2}=-1+4 i$
(b) $z_{1}=2-i, z_{2}=3+4 i$

EXERCISE 4

1. If P represents the complex number z, sketch the locus of P if
(a) $|z|=4$
(b) $|z| \leq 4$
(c) $|z-3|<3$
(d) $|z+3 i|<1$
(e) $|2 z-3|=1$
(f) $|z-1-2 i|=4$
(g) $\arg z=\frac{\pi}{2}$
(h) $\arg z=-\frac{\pi}{3}$
(i) $\operatorname{Re}(z)=2$
(j) $\operatorname{Im}(z)=-2$
(k) $1<|z|<2$
(l) $3<|z| \leq 4$
(m) $2 \leq|z| \leq 5$
(n) $1 \leq|z+2| \leq 2$
(o) $2 \leq \operatorname{Im}(z)<3$
(p) $2<\operatorname{Re}(z) \leq 3$
(q) $0<\arg z<\frac{\pi}{6}$
(r) $\frac{\pi}{2}<\arg z<\frac{2 \pi}{3}$
(s) $\left|\frac{\pi}{2}\right| \geq \frac{1}{9}$
(t) $1<|z-1+i|<2$
(u) $\operatorname{Re}\left(z^{2}\right)=0$
(v) $\operatorname{Im}\left(z^{2}\right)=2$
(w) $\operatorname{Re}(z)=|z-1|$
(x) $0<\operatorname{Re}(z) \leq 2$
(y) $\operatorname{Re}(z-i z) \geq 2$
2. Mark clearly on an Argand diagram the regions of the z plane satisfied by
(a) $\operatorname{Re}(z) \geq 1$ and $1 \leq \operatorname{Im}(z) \leq 2$
(b) $3<|z|$ and $\frac{\pi}{4}<\arg z \leq \pi$
(c) $|z| \leq 3$ and $\operatorname{Im}(z)>1$
(d) $2<|z| \leq 3$ and $\operatorname{Im}(z)>1$
(e) $\operatorname{Im}(z) \geq 1$ and $0 \leq \arg z \leq \frac{\pi}{4}$
(f) $1 \leq \operatorname{Re}(z) \leq 2$ and $2 \leq \operatorname{Im}(z) \leq 3$
(g) $1<|z+i|<2$ and $\pi<\arg z<\frac{3 \pi}{2}$
(h) $4 \leq \operatorname{Im}(z) \leq 4$ and $|z| \geq 5$
(i) $|2 z-3|<2$ and $\frac{\pi}{6}<\arg z<\frac{\pi}{2}$

EXERCISE 5

1. Find the Cartesian equation of the following curves, and sketch and describe them
(a) $|z-2|=|z+i|$
(b) $|z+2-3 i|=|z+2+i|$
(c) $|z-2 i|=2|z+1|$
(d) $|z+2-3 i|=2|z+2+i|$
2. For the following, describe the locus of the complex number w, where z is restricted as indicated
(a) $w=z-2,|z|=3$
(b) $w=\frac{z-2}{z},|z|=1$
(c) $w=\frac{z-2 i}{z},|z|=2$
(d) $\quad w=\frac{z-2+i}{z+2-i}|z|=1$
3. Find the locus of z if
(a) $\quad w=\frac{z-1}{z}$ and w is purely real
(b) $w=\frac{z^{2}-i}{z-2}$ and w is purely imaginary
(c) $w=\frac{z-2}{z+2}$ and $\arg w=\frac{\pi}{3}$
4. Sketch on an Argand diagram the locus of the point P representing z, given that $|z|^{2}=z+\bar{z}+1$.
5. $|z+i| \leq 2$ and $0 \leq \arg (z+1) \leq \frac{\pi}{4}$. Sketch the region in the Argand diagram which contains the point P representing z.
6. $\quad|z-1| \leq|z-i|$ and $|z-2-2 i| \leq 1$. Sketch the region in the Argand diagram which contains the point P representing z. If P describes the boundary of this region, find the value of z when $\arg (z-1)=\frac{\pi}{4}$.
7. $|z-1|=1$. Sketch the locus of the point P representing z on an Argand diagram. Hence deduce that $\arg (z-1)=\arg \left(z^{2}\right)$.
8. $\operatorname{Arg}(z+3)=\frac{\pi}{3}$. Sketch the locus of the point P representing z on an Argand diagram. Find the modulus and argument of z when $|z|$ takes its least value. Hence find, in the form $a+i b$, the value of z for which $|z|$ is a minimum.
9. $z=x+i y$ is such that $\frac{z-i}{z-1}$ is purely imaginary. Find the equation of the locus of the point P representing z and show this locus on an Argand diagram.
10. $\operatorname{Re}\left(z-\frac{1}{z}\right)=0$. Find the equation of the locus of the point P representing z on an Argand diagram and sketch this locus.
11. Find the locus of z if
(a) $\left|\frac{z-i}{z+2}\right|=1$
(b) $\arg \left(\frac{z-i}{z+2}\right)=\frac{\pi}{2}$
(c) $\left|\frac{z-2}{z+2}\right| \leq 1$
(d) $2(z+\bar{z})-5 i(z-\bar{z})=21$
(e) $z \bar{z}-(2+i) z-(2-i) \bar{z} \leq 4$
(f) $\quad \arg \left(\frac{z-i}{z+2}\right)=0$
(g) $|z+3 i|^{2}+|z-3 i|^{2}=90$
