COMPLEX NUMBERS

EXERCISE 1

Solve for z, expressing answers in the form a + ib.

(a)
$$(1+i)z = 2-i$$

(b)
$$\frac{2z}{2+i} + 3 - 2i = (1-i)z$$

(c) $\frac{2}{z} = 1 + i + \frac{3}{1-i}$

(c)
$$\frac{2}{z} = 1 + i + \frac{3}{1-i}$$

(d)
$$\frac{z+3}{z-1} = 2-3i$$

2. Find the quadratic equation with roots

4.

(b)
$$1+i, 1-i$$

(c)
$$2+3i$$
, $2-3i$ (d) $3+i$, $1+3i$

(d)
$$3+i$$
, $1+3i$

(e)
$$2+i, \frac{1}{2+i}$$

3. Solve for *z* and *w*

(a)
$$z + iw = 2 + 3i$$

 $z - iw = 2 - 3i$

(b)
$$2x + w = 1 + i$$

$$z - w = 1 - i$$

(c)
$$(2+i)z + (2-i)w = 1$$

 $(2-i)z + (2+i)w = 2$

(d)
$$z + (1-i)w = 2i$$

 $w + (1-i)z = 1$

Show that
$$x = i$$
 is a root of the equation $x^3 + (1 - i)x^2 + (1 - 2i)x = 1 + i$

- If x = 1 + i is a root of $x^3 + ax + 4 = 0$, show that a = -25.
- If $\sqrt{x} + iy = a + ib$ where x, y, a, b are real and a > 0, provate that $a^2 b^2 = x$ and 2ab = y. 6. Hence express the square root of the following in the form a + ib

(a)
$$5 + 2i$$

(b)
$$21 - 20i$$

(c)
$$i$$

(d)
$$-11 - 60i$$

- If ω is a complex cube root of unity (ie a root of $z^3 = 1$), prove that ω^2 is also a complex cube root of 1. unity. Further prove that:
 - (a) $1 + \omega + \omega^2 = 0$
 - (b) $\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = 1$ (c) $(1+\omega)^3 = -1$

 - (d) $(1 + \omega^2)^5 = -\omega^2$
- ω is a complex root of the equation $z^3 1 = 0$. Form a quadratic equation whose roots are given by 2. $\alpha = 2 + \omega$ and $\beta = 2 + \omega^2$.
- 3. If ω is the complex cube root of unity, show that
 - $(1 + \omega \omega^2) (1 \omega + \omega^2)^3 = 0$
 - $\frac{a + b\omega + c\omega^2}{c + a\omega + b\omega^2} = \omega^2$ $\frac{a + b\omega + c\omega^2}{b + c\omega + a\omega^2} = \omega$
 - (c)
- If x = a + b, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$, where 1, ω , ω^2 are the other roots of unity, prove that 4.
 - x + y + z = 0
 - $(a + b\omega + c\omega^{2})(a + b\omega^{2} + c\omega) = a^{2} + b^{2} + c^{2} ab bc ca$
- 5. If 1, ω , ω^2 are the three cube roots of unity, prove that $(a+b+c)(a-b\omega+c\omega^{2})(a+b\omega+c\omega^{2})(a+b\omega^{2}+c\omega) = a^{3}+b^{3}+c^{3}-3abc$
- If ω is complex root of $z^5 1 = 0$, show that ω^2 , ω^3 , ω^4 are the other complex roots. 6.
 - Prove that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$
 - Find the quadratic equation whose roots are $\alpha = \omega + \omega^4$ and $\beta = \omega^2 + \omega^3$ (b)
 - Show the roots of $z^5 1 = 0$ on an Argand diagram (c)
 - Find the area of the pentagon formed by the roots (to 2 dec. Pl)
- If ω is a complex root of $z^6 1 = 0$ then show that the other roots are ω^2 , ω^3 , ω^4 , ω^5 . Prove that 7.
 - $1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 = 0$
 - Find all the roots in the form a + ib and indicate these roots in an Argand diagram. (b) Find the area of the hexagon formed by the roots.
 - Find the quadratic equation whose roots are
 - (i) ω and ω^5
- (ii) ω^2 and ω^4
 - Show that (d)
 - $z^6 1 = (z^2 1)(z^2 + z + 1)(z^2 z + 1)$ $= (z - 1)(z + 1)(z - \omega)(z - \omega^{5})(z - \omega^{2})(z - \omega^{4})$ The roots of $z^{4} + z^{2} + 1 = 0$ are ω , ω^{2} , ω^{4} and ω^{5}

- 1. If $z_1 = 2 + 3i$, $z_2 = -1 + 4i$, show on separate Argand diagrams
 - (a) z_1
 - (b) z_2
 - (c) $z_1 + z_2$
 - (d) $z_1 z_2$
 - (e) $z_2 z_1$
 - (f) z_1z_2
 - (g) iz_1
 - (h) iz_2
- 2. Show on separate Argand diagrams the points representing
 - (a) 2 i
 - (b) 3 + 4i
 - (c) (2-i)+(3+4i)
 - (d) (2-i)-(3+4i)
 - (e) (2-i)(3+4i)
 - (f) i(2-i)
 - (g) i(3+4i)
- 3. Verify the triangle inequalities, $|z_1 + z_2| \le |z_1| + |z_2|$ and $|z_1 z_2| \ge |z_1| |z_2|$ when
 - (a) $z_1 = 2 + 3i$, $z_2 = -1 + 4i$
 - (b) $z_1 = 2 i$, $z_2 = 3 + 4i$

- 1. If P represents the complex number z, sketch the locus of P if
 - |z| = 4(a)
 - (b) $|z| \le 4$
 - (c) |z-3| < 3
 - (d) |z + 3i| < 1
 - (e) |2z 3| = 1
 - |z 1 2i| = 4(f)
 - (g) arg $z = \frac{\pi}{2}$
 - $\arg z = -\frac{\pi}{3}$ (h)
 - $Re(z) = 2^{3}$ (i)
 - (j) Im(z) = -2
 - (k) 1 < |z| < 2
 - (1) $3 < |z| \le 4$
 - (m) $2 \le |z| \le 5$
 - (n) $1 \le |z+2| \le 2$
 - (o) $2 \le \text{Im}(z) < 3$
 - (p) $2 < \text{Re}(z) \le 3$

 - (q) $0 < \arg z < \frac{\pi}{6}$ (r) $\frac{\pi}{2} < \arg z < \frac{2\pi}{3}$
 - (s)
 - 1 < |z 1 + i| < 2(t)
 - (u) $Re(z^2) = 0$
 - $Im(z^2) = 2$ (v)
 - (w) Re(z) = |z 1|
 - $0 < \text{Re}(z) \le 2$ (x)
 - $\text{Re}(z iz) \ge 2$ (y)
- 2. Mark clearly on an Argand diagram the regions of the z plane satisfied by
 - (a) $Re(z) \ge 1$ and $1 \le Im(z) \le 2$
 - 3 < |z| and $\frac{\pi}{4} < \arg z \le \pi$ (b)
 - $|z| \le 3$ and Im(z) > 1(c)
 - (d) $2 < |z| \le 3$ and Im(z) > 1
 - (e) $\operatorname{Im}(z) \ge 1$ and $0 \le \arg z \le \frac{\pi}{4}$
 - (f) $1 \le \text{Re}(z) \le 2 \text{ and } 2 \le \text{Im}(z) \le 3$
 - (g) 1 < |z + i| < 2 and $\pi < \arg z < \frac{3\pi}{2}$

 - (h) $4 \le \text{Im}(z) \le 4 \text{ and } |z| \ge 5$ (i) $|2z 3| < 2 \text{ and } \frac{\pi}{6} < \text{arg } z < \frac{\pi}{2}$

- 1. Find the Cartesian equation of the following curves, and sketch and describe them
 - |z-2|=|z+i|
 - |z + 2 3i| = |z + 2 + i|(b)
 - |z 2i| = 2|z + 1|(c)
 - |z + 2 3i| = 2|z + 2 + i|
- For the following, describe the locus of the complex number w, where z is restricted as indicated

 - (a) w = z 2, |z| = 3(b) $w = \frac{z 2}{z}$, |z| = 1(c) $w = \frac{z 2i}{z}$, |z| = 2(d) $w = \frac{z 2 + i}{z + 2 i}$, |z| = 1
- 3. Find the locus of z if

 - (a) $w = \frac{z-1}{z}$ and w is purely real (b) $w = \frac{z-i}{z-2}$ and w is purely imaginary (c) $w = \frac{z-i}{z-2}$ and $w = \frac{\pi}{3}$
- Sketch on an Argand diagram the locus of the point P representing z, given that $|z|^2 = z + \overline{z} + 1$. 4.
- $|z+i| \le 2$ and $0 \le \arg(z+1) \le \frac{\pi}{4}$. Sketch the region in the Argand diagram which contains the point P 5. representing z.
- $|z-1| \le |z-i|$ and $|z-2-2i| \le 1$. Sketch the region in the Argand diagram which contains the point P 6. representing z. If P describes the boundary of this region, find the value of z when $\arg(z-1) = \frac{\pi}{4}$.
- 7. |z-1|=1. Sketch the locus of the point P representing z on an Argand diagram. Hence deduce that $arg(z - 1) = arg(z^2)$.
- $Arg(z + 3) = \frac{\pi}{3}$. Sketch the locus of the point P representing z on an Argand diagram. Find the modulus 8. and argument of z when |z| takes its least value. Hence find, in the form a + ib, the value of z for which |z| is a minimum.
- z = x + iy is such that $\frac{z i}{z 1}$ is purely imaginary. Find the equation of the locus of the point P representing z 9. and show this locus on an Argand diagram.
- $\operatorname{Re}\left(z-\frac{1}{z}\right)=0$. Find the equation of the locus of the point P representing z on an Argand diagram and 10. sketch this locus.
- 11. Find the locus of z if

 - (b) $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{2}$ (c) $\left|\frac{z-2}{z+2}\right| \le 1$

 - $2(z+\overline{z})-5i(z-\overline{z})=21$
 - $z\bar{z} (2+i)z (2-i)\bar{z} \le 4$