REVISION FOR T2W1 ASSESSMENT TASK **Circle Geometry**

∠AOC=2x∠ABC Circle Geometry Result No.

If AM = MB and $MN \perp AB$ then NMpasses through O.

∠B = ∠CDE

Circle Geometry Result No.

Circle Geometry Result No.

If \angle OCB= \angle OCA then AC = BC

Circle Geometry Result No.

If AB is a diameter then \angle ACB=90° \angle B + \angle D = 180° and \angle C + \angle A = 180°

∠n3A = ∠BCD

Circle Geometry Result No.

Circle Geometry Result No.

Circle Geometry Result No.

If AC = BC then $\angle OCB = \angle OCA = 90^{\circ}$

∠AOC=2 x ∠ABC

AB and AC are tangents to the circle from the same external point hence AC = AC

Circle Geometry Result No.

If AB = CD then OE = OF Circle Geometry Property No.

Circle Geometry Result No.

Circle Geometry Result No.

∠ABC=∠ADC

Circle Gemetry Result No.

arcAB = arc CD or chord AB = chord CD

then ∠AOB=∠COD

Circle Geometry Result No.

∠AOC=2 x ∠ABC

Circle Geometry Result No.

If OC is a radius and AB is a tangent meeting the circle at C then \angle OCA = 90 °

Circle Geometry Result No.

Line of centres OQ passes through (

AE x EB = DE x EC Circle Geometry Result No.

 $PT2 = QP \times PR$

Circle Geometry Result No.

the point of contact of tangent BT

Circle Geometry Result No.

Circle Geometry Results

- Equal angles at the centre stand on equal chords and equal arcs. 1.
- Equal chords (or arcs) subtend equal angles at the centre. 2.
- A line from the centre which is perpendicular to a chord, bisects the chord. 3.
- A line from the centre which bisects a chord is perpendicular to the chord. 4.
- Equal chords are equidistant from the centre. 5.
- The perpendicular bisector of a chord of a circle must pass through the centre of the circle. 6.
- 7. Angles in the same segment are equal.
- Angle in a semi-circle is a right angle. 8.
- The angle at the centre is double the angle at the circumference standing on the same arc. 9.
- Opposite angles in a cyclic quadrilateral are supplementary. 10.
- The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle. 11.
- The products of intercepts of intersecting chords are equal. 12.
- When circles touch, the line of centres passes through the point of contact. 13.
- The angle between a tangent and a radius drawn to the point of contact is a right angle. 14.
- Tangents drawn from the same external point are equal. 15.
- The square of the length of the tangent is equal to the product of the intercepts of a secant drawn from 16. an external point.
- An angle formed by a tangent to a circle with a chord drawn to the point of contact is equal to any point 17. in the alternate segment.

Hints on answering questions

- Always draw a clear diagram and mark on the diagram all given information.
- * Work from the known lowards the desired result.
- If an angle is required, mark sizes of angles on the diagram as you find them. If it is a deductive question it is generally useful to label one of the angles with a pronumeral (one of the angles in the result).
- If sides are involved, consider isosceles triangles or congruent triangles.
- If you become lost, check that all given information has been used.
- * Use any hints given in the question.

SOLUTIONS (Working across)

			- 0 -	9	
(a)	1	(b)	9	(1) 6	
(d)	H	(e)	3	(8)	
(9)	10	(h)	17	li) 4	
<i>(</i> j)	5	ik)	4	(1) 15	
(m)	7	(n)	a	(c) q	
(p)	14	(q)	13	(L) 15	(5)16

Summary of circle properties

(proofs not required)

- Definition of circle, centre, radius, diameter, arc. sector, segment, chord, tangent, concyclic points, cyclic quadrilateral, subtend.
- Two circles touch if they have a common tangent at the point of contact.
- Equal arcs on equal circles subtend equal angles at the centre (and the converse).
- The angle at the centre is twice the angle at the circumference subtended by the same arc.
- Any tangent is perpendicular to a radius drawn to the point of contact (and the converse).

Summary of circle properties

(proofs may be required)

- * The perpendicular line from the centre to a chord bisects it (and the converse).
- # Equal chords in equal circles are equidistant from the centre (and the converse).
- * Angles in the same segment are equal
- * An angle in a semi-circle is a right angle.
- *Opposite angles of a cyclic quadrilateral are supplementary (and the converse).
- The exterior angle of a cyclic quadrilateral equals the interior opposite angle.
- The angle between a tangent and a chord through the point of contact equals the angle in the alternate segment.
- * Tangents from an external point are equal.
- * When circles touch, the line of centres passes mough the point of contact.
- * Any three non-collinear points lie on a unique colle, whose centre is the point of concurrency of as perpendicular bisectors of the intervals joining the points.
- * If an interval subtends equal angles at two points on the same side of it, than the end points of the anserval and the two points are concyclic.
- The products of the intercepts of two intersecting should are equal.
- * The square of the length of the tangent from an external point is equal to the product of the managed of the secant passing through this point