Differentiation

- Differentiation from first principles
$\lim _{x \rightarrow h} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}$
-or-
$\lim _{x \rightarrow c} \frac{\mathrm{f}(x)-\mathrm{f}(c)}{x-c}$
- Using the alternate definition
$x^{n}-c^{n}=(x-c)\left(x^{n-1}+x^{n-2} c+\ldots+x c^{n-2}+c^{n-1}\right)$
- Basic rule for differentiation
if $y=x^{n}$ then $\frac{d y}{d x}=n x^{n-1}$
- Function of a Function rule (chain rule)
$-\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
- if $y=[\mathrm{f}(x)]^{n}$ then $\frac{d y}{d x}=n[\mathrm{f}(x)]^{n-1} . \mathrm{f}^{\prime}(x)$

- The product rule

- if $y=u . v$ where u and v are functions of x, then $\frac{d y}{d x}=u \frac{d u}{d x}+v \frac{d u}{d x}$
- ie. first \times derivative of the second + second \times derivative of the first
- The quotient rule
- if $y=\frac{u}{v}$ and u and v are functions of x, then $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
- ie. bottom \times derivative of the top - top \times derivative of the bottom all over bottom squared
- The equation of a tangent to a point on a curve
- find the derivative of the curve
- substitute the x value of the point into the derivate to find the gradient
- find the y value if not given by substitution into the original curve
- substitute the gradient, x and y values into the formula $y-y_{1}=m\left(x-x_{1}\right)$ to find the equation of the tangent
- The equation of a normal to a point on a curve
- find the derivative of the curve
- substitute the x value of the point into the derivate to find the gradient
- the gradient of the normal is the negative reciprocal
- find the y value if not given by substitution into the original curve
- substitute the gradient, x and y values into the formula $y-y_{1}=m\left(x-x_{1}\right)$ to find the equation of the normal
- Angle between two curves
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

