Geometric Applications of the Derivative

- Types of Functions

$-\frac{d y}{d x}>0$, increasing function

$-\frac{d y}{d x}<0$, decreasing function

$-\frac{d y}{d x}=0$, stationary point

- Monotonic increasing if $\frac{d y}{d x}>0$ over particular interval
- Monotonic decreasing if $\frac{d y}{d x}<0$ over particular interval

- Maximum and Minimum Points

- Absolute maximum: largest value of function in whole domain
- Relative maximum: function is greater than other points in the neighbourhood
- Absolute minimum: least value of function in whole domain
- Relative minimum: function is smaller than other points in the neighbourhood
- Critical points when $\mathrm{f}^{\prime}(\mathrm{x})=0$ and is undefined (denominator)
- Stationary Points
- Maximum turning point:

- Minimum turning point:

- Horizontal point of inflexion on Rising Curve:

- Horizontal point of inflexion on Falling Curve:

$$
\frac{\left(y^{\prime}<0\right.}{y^{\prime}=0} \mathrm{y}^{\prime}<0
$$

- Higher Derivatives

$y^{\prime}=\frac{d}{d x}[f(x)]$
$\mathrm{y}^{\prime \prime}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{\mathrm{dy}}{\mathrm{dx}}\right]$ ie derivative of first derivative

- Second Derivative, Concavity, Turning Points and Points of Inflexion
- If $y^{\prime \prime}>0$, then the curve is concave upwards, and minimum turning point
- If $y^{\prime \prime}<0$, then the curve is concave downwards and maximum turning point
- If $y^{\prime \prime}=0$, and changes from $y^{\prime \prime}>0$ to $y^{\prime \prime}<0$ around, then it is a point of inflexion on rising curve
- If $y^{\prime \prime}=0$, and changes from $y^{\prime \prime}<0$ to $y^{\prime \prime}>0$ around, then it is a point of inflexion on falling curve

- Further Curve Sketching

- Find any stationary points using $\mathrm{f}^{\prime}(x)=0$ and determine their nature
- Find possible points of inflexion using $\mathrm{f}^{\prime \prime}(x)=0$ and determine their nature
- Find intercepts on both axes:
- for x-intercept $y=0$
- for y-intercept $x=0$
- Find the domain and range if applicable
- Find any asymptotes or limits.
- Use symmetry, particularly if the function is even or odd
- Draw up a table of values as a last resort
- Practical Applications
- Express the quantity to be maximised or minimised in terms of one variable
- Differentiate with respect to the one variable
- Make the derivate function equal to zero
- Solve the equation
- Test the change of sign of the first derivative of the sign of the second derivative test
- Primative Function
- PF of x^{n} is $\frac{x^{n+1}}{\mathrm{n}+1}+C$
- If $\mathrm{f}^{\prime}(x)=(a x+b)^{n}$ then the PF is $\frac{(a x+b)^{\mathrm{n}+1}}{a(n+1)}+C$

