Year	12 Extension 1Geometrical Applications of Calculus AssignmentDate Due:
1.	Show that the function $y = x^3 + 5x^2 + 7x + 2$ is increasing when $x = 3$.
2.	For what values of x is $y = 2x^2 - 9x + 4$ a decreasing function?
3.	 (a) Find the stationary points of the curve y = 2x³ + 3x² - 12x + 7. (b) Determine the nature of these stationary points. (c) Find the value of the absolute minimum and absolute maximum values o this curve when -3 ≤ x ≤ 4. (d) Hence sketch the curve.
4.	Show that the stationary point of the curve $y = x^3 - 3x^2 + 3x + 1$ is a horizontal point of inflexion.
5.	Find the second derivative of: (a) $y = x^6 + 3x^5 - 4x^3 + 2x^2 - 9x - 7$ (b) $y = (2x^2 + 5)^8$
6.	If $y = 2x^2 - 2x - 1$, show that $y + y' + y'' = 2x^2 + 2x + 1$.
7.	Show that the curve $y = (x - 1)(x^2 - 2)^2$ is concave down when $x < 1$.
8.	Find any points of inflexion on the curve $y = x^3 + x - 3$.
9.	Sketch the curve $y = (x - 1)(x^2 - 1)$ showing all important features.
10.	Find the maximum product of two numbers, x and y, whose sum is 25.
11.	Find the equation of the tangent to the curve $y = \sqrt{25 - x^2}$ at the point where $x = 3$.
12.	Find the equation of the normal to the curve $y = x^3 - 5x^2 + 4x + 6$ at the point (1, 6).
13.	Find the primitive functions of: (a) $x^2 + 7x - 5$ (b) $4x^3 - 9x^2 - 6x + 6$ (c) $\frac{1}{x^2}$
14.	 A sheet of cardboard measures 15cm by 7cm. Four equal squares, each of length <i>x</i> cm, are cut out of the coroners and the sides are turned up to form an open rectangular box. (a) Draw a diagram to illustrate this information. (b) Write down expressions for the length, breadth and height of the rectangular box. (c) Find the length, <i>x</i>, of the edge of the squares cut out, so that the box will have maximum volume.
15.	For the curve $y = \frac{x^2}{x^2 - 4}$: (a) Find and determine the nature of any turning points. (b) Find any asymptotes. (c) Hence sketch the curve.