Year 12 Extension 1 Integration Assignment Date Due:

1. Use the Trapezoidal Rule to find an approximation for $\int_{1}^{4} \mathrm{f}(t) d t$ where the values of $\mathrm{f}(t)$ are given in the table.

t	1	2	3	4
$\mathrm{f}(t)$	8.9	6.5	4.1	2.9

2. Approximate $\int_{1}^{3}\left(x^{2}-1\right) d x$ using 4 subintervals (ie 5 function values)
3. Find:
(a) $\int\left(x^{7}+5 x-3\right) d x$
(b) $\int \frac{x^{6}-3 x^{5}+2 x^{4}}{x^{2}} d x$
(c) $\int(7 x+8)^{12} d x$
4. Find the value of:
(a) $\int_{3}^{6} \sqrt{x-2} d x$
(b) $\int_{0}^{1} \frac{d x}{(3 x-2)^{4}}$
(c) $\int_{1}^{4} \frac{2}{\sqrt{(5 x-4)^{3}}} d x$
5. Find the area enclosed between the curve $y=x^{2}+1$, the x-axis and the lines $y=-2$ and $x=2$.
6. Find the area enclosed between the curve $y=\frac{1}{x^{2}}$, the y-axis and the lines $y=1$ and $y=4$ in the first quadrant.
7. Find the area enclosed between the curves $y=x^{2}$ and $y=(x-4)^{2}$ and the x-axis.
8. Find the volume of the solid formed when:
(a) the curve $y=x^{2}+2$ is rotated about the x-axis from $x=0$ to $x=2$.
(b) the curve $x^{2}+y^{2}=4$ is rotated about the y-axis from $y=1$ to $y=2$.
