DAPTO HIGH SCHOOL

EXTENSION 1

YEAR 11

HALF-YEARLY EXAMINATION

2009

General Instructions

- Reading time - 5 minutes
- Working time $-1 \frac{1}{2}$ hours
- Write using blue or black pen
- Approved calculators may be used
- Write on only one side of the paper
- Each question must be written on a new sheet of paper

Total Marks - 72

- Attempt Questions 1-6
- All questions are of equal value
- Write your name at the top of each piece of paper
(a) Solve $\frac{4}{x+2} \geq 3$
(b) Write down the domain and range for: $y=-\sqrt{49-x^{2}}$
(c)

$X Y=25 \mathrm{~cm}$ and $X P=15 \mathrm{~cm}$. Find the length of $T P$, stating a reason for your answer.

Give your answer in simplest surd form.
(d)

Consider the triangle $A B C$.
(i) Show that $A C=4 \sqrt{2}$
(ii) Hence, find the exact value of $\sec \theta$.
(e) Find the exact value of $\sin 120^{\circ}-\tan 210^{\circ}$.

Express your answer with a rational denominator.
(a) Simplify: $\frac{50-2 x^{2}}{15-3 x} \times \frac{x^{2}+5 x}{x^{2}+10 x+25}$
(b) Find x given that $\sin (x+25)^{\circ}=\cos 55^{\circ}$
(c) If $f(x)=3 k x$ and $f(-2)=7$, find the value of k.
(d)

$P T$ is a tangent to the circle with centre $\mathrm{O} . A B$ is a diameter.
Find the values of a and b. Give reasons for your answers.
(e)
A

B

C

(i) Which of the figures (A, B or C) represent functions?
(ii) Which of the graphs (A, B or C) are continuous?
(a) Sketch the following functions, showing all necessary features:
(i) $y=3^{-x} \quad \mathbf{2}$
(ii) $y=\frac{-2}{x+2}$ 2
(iii) $y=|2 x+1|$
(b) A is 8 kilometres due north of B and 16 kilometres due west of C.
(i) Show this information on a diagram. 1
(ii) Find the bearing of B from C.
(c) Solve the equation $(x+2)^{2}+(x-1)(x-7)=12$ by first expanding and simplifying. Give your answer in simplest surd form.
(a) $A B C D$ is a cyclic quadrilateral where $A C$ bisects $\angle D A B, \angle B A C=42^{\circ}$ and $F E$ is a tangent to the circle at C.

(i) Find the size of $\theta(\angle B C E)$. You must give a reason.
(ii) Prove that $F E$ is parallel to $D B$.
(b) Find:
(i) $\quad \lim _{x \rightarrow 3} \frac{x^{2}-9}{4 x-12}$
(ii) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x}{5-x^{2}}$
(c) Find the size of each angle of a regular octagon.
(d) Solve $|x+2|+|x-2|=4$.
(a) On a number plane, sketch the region which satisfies the inequalities $y \leq 2 x-x^{2}$ and $y>2 x-1$.
(b)

Two geologists on a large flat mining claim drive 20 km from a point A on a bearing of $150^{\circ} \mathrm{T}$ to point B . They then drive 40 km on a bearing of $020^{\circ} \mathrm{T}$ to point C.
(i) Copy the above diagram onto your answer sheets and show that $\angle A B C=50^{\circ}$.
(c) Solve the following simultaneous equations:

$$
\begin{aligned}
a+b+c & =6 \\
2 a+3 b+c & =13 \\
a+2 b-c & =5
\end{aligned}
$$

(d) (i) Determine whether the function $f(x)=4 x-x^{4}$ is odd, even or neither.
(ii) Describe the symmetry in the graph of the function $f(x)=4 x-x^{4}$.
(a) (i) Show that the equation of the locus of the points $P(x, y)$ whose distance from the point $Q(11,-11)$ is twice the distance from the point $R(2,1)$ is a circle given by $x^{2}+2 x+y^{2}-10 y=74$.
(b) Solve $3^{2 n-4}=81$.
(c) Find the two values of θ, correct to the nearest minute, given that $\cos \theta=0.507$ and $0^{\circ} \leq \theta \leq 360^{\circ}$.
(d)

NOT TO SCALE

The figure shows the side view of bridge opened to let boats pass underneath.
When the equal arms of the bridge $P A$ and $Q B$ are lowered, they meet exactly to form the straight roadway $P Q$, which is 50 metres long.

When the arms $P A$ and $Q B$ are raised through an angle θ as shown, the 'corridor' $A B$ is 12 metres wide.

Calculate the size of angle θ, correct to the nearest degree.

End of Paper

