MATHEMATICS REVISION OF FORMULAE AND RESULTS

Surds

- $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$
- $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$
- $(\sqrt{a})^{2}=a$

Absolute Value

$$
\begin{gathered}
|a|=a \text { if } a \geq 0 \\
|a|=-a \text { if } a<0
\end{gathered}
$$

Geometrically:
$|x|$ is the distance of x from the origin on the number line $|x-y|$ is the distance between x and y on the number line

$$
\begin{gathered}
|a b|=|a| \cdot|b| \\
|a+b| \leq|a|+|b|
\end{gathered}
$$

Factorisation

$$
\begin{aligned}
x^{3}-\mathrm{y}^{3} & =(x-y)\left(x^{2}+x y+y^{2}\right) \\
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right)
\end{aligned}
$$

Real Functions

- A function is even if $\mathrm{f}(-x)=\mathrm{f}(x)$. The graph is symmetrical about the y-axis.
- A function is odd if $\mathrm{f}(-x)=-\mathrm{f}(x)$. The graph has point symmetry about the origin.

The Circle

The equation of a circle with:

- Centre the origin $(0,0)$ and radius r units is:

$$
x^{2}+y^{2}=r^{2}
$$

- Centre (a, b) and radius r units is:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Co-ordinate Geometry

- Distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
- Gradient formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $m=\tan \theta$
- Midpoint Formula: midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- Perpendicular distance from a point to a line:

$$
\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

- Acute angle between two lines (or tangents)

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

- Equations of a Line
gradient-intercept form: $y=m x+b$
point-gradient form: $\quad y-y_{1}=m\left(x-x_{1}\right)$
two point formula: $\quad \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
intercept formula: $\quad \frac{x}{a}+\frac{y}{b}=1$
general equation: $a x+b y+c=0$
- Parallel lines:

$$
m_{1}=m_{2}
$$

- Perpendicular lines: $\quad m_{1} \cdot m_{2}=-1$

Trigonometric Results

- $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
- $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
- $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
- Complementary ratios:

$$
\begin{gathered}
\sin \left(90^{\circ}-\theta\right)=\cos \theta \\
\cos \left(90^{\circ}-\theta\right)=\sin \theta \\
\tan \left(90^{\circ}-\theta\right)=\cot \theta \\
\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta \\
\operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta
\end{gathered}
$$

- Pythagorean Identities

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta \\
\tan ^{2} \theta+1=\sec ^{2} \theta \\
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { and } \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{gathered}
$$

- The Sine Rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

- The Cosine Rule

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
& \operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

- The Area of a Triangle

$$
\text { Area }=\frac{1}{2} a b \operatorname{Sin} C
$$

The Quadratic Polynomial

- The general quadratics is: $y=a x^{2}+b x+c$
- The quadratic formula is: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- The discriminant is: $\Delta=b^{2}-4 a c$

If $\Delta \geq 0$ the roots are real If $\Delta<0$ the roots are not real

If $\Delta=0$ the roots are equal
If Δ is a perfect square, the roots are rational

- If α and β are the roots of the quadratic equation

$$
a x^{2}+b x+c=0
$$

then: $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$

- The axis of symmetry is: $x=-\frac{b}{2 a}$
- If a quadratic function is positive for all values of x, it is positive definite i.e. $\Delta<0$ and $a>0$
- If a quadratic function is negative for all values of x, it is negative definite i.e. $\Delta<0$ and $a<0$
- If a function is sometimes positive and sometimes negative, it is indefinite i.e. $\Delta>0$

The Parabola

- The parabola $x^{2}=4$ ay has vertex $(0,0)$, focus $(0, a)$, focal length ' a ' units and directrix $y=-a$
- The parabola $(x-h)^{2}=4 a(y-k)$ has vertex (h, k)

Differentiation

- First Principles:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow \infty} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{h}
\end{aligned}
$$

- If $y=x^{n}$ then $\frac{d y}{d x}=n x^{n-1}$
- Chain Rule: $\frac{d}{d x}[f(u)]=f^{\prime}(u) \frac{d u}{d x}$
- Product Rule: If $y=u v$ then $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
- Quotient Rule: If $y=\frac{u}{v}$ then $\frac{d y}{d x}=\frac{v \frac{d u}{d x}+u \frac{d v}{d x}}{v^{2}}$
- Trigonometric Functions:

$$
\begin{aligned}
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x
\end{aligned}
$$

- Exponential Functions: $\quad \frac{d}{d x}\left(e^{f(x)}\right)=f^{\prime}(x) e^{f(x)}$

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \ln a
$$

- Logarithmic Functions: $\frac{d}{d x}\left(\log _{e} f(x)\right)=\frac{f^{\prime}(x)}{f(x)}$

Geometrical Applications of Differentiation

- Stationary points: $\quad \frac{d y}{d x}=0$
- Increasing function: $\quad \frac{d y}{d x}>0$
- Decreasing function: $\frac{d y}{d x}<0$
- Concave up: $\quad \frac{d^{2} y}{d x^{2}}<0$
- Concave down: $\quad \frac{d^{2} y}{d x^{2}}>0$
- Minimum turning point: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}>0$
- Maximum turning point: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}<0$
- Points of inflexion: $\frac{d^{2} y}{d x^{2}}=0$ and concavity changes about the point.
- Horizontal points of inflexion: $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}=0$ and concavity changes about the point.

Approximation Methods

- The Trapezoidal Rule:

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+y_{3}+\ldots+y_{n-1}\right)\right]
$$

- Simpson's Rule:
$\int_{a}^{b} f(x) d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots\right)+2\left(y_{2}+y_{4}+\ldots\right)\right]$

In both rules, $h=\frac{b-a}{n}$ where n is the number of strips.

Integration

- If $f(x) \geq 0$ for $a \leq x \leq b$, the area bounded by the curve $y=f(x)$, the x-axis and $x=a$ and $x=b$ is given by $\int_{a}^{b} f(x) d x$.
- The volume obtained by rotating the curve $y=f(x)$ about the x-axis between $x=a$ and $x=b$ is given by

$$
\pi \int_{a}^{b}[f(x)]^{2}
$$

- If $\frac{d x}{d x}=x^{n}$ then $y=\frac{x^{n+1}}{n+1}$
- If $\frac{d x}{d x}=(a x+b)^{n}$ then $y=\frac{(a x+b)^{n}}{a(n+1)}$
- Trigonometric Functions:

$$
\begin{aligned}
& \int \sin x d x=-\cos x+C \\
& \int \cos x d x=\sin x+C \\
& \int \sec ^{2} x d x=\tan x+C
\end{aligned}
$$

- Exponential Functions:

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+\mathrm{C} \text { and } \int a^{x} d x=\frac{1}{\ln a} \cdot a^{x}
$$

- Logarithmic Functions:

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\log _{e} x+\mathrm{C}
$$

Sequences and Series

- Arithmetic Progression

$$
\begin{aligned}
& d=U_{2}-U_{1} \\
& U_{n}=a+(n-1) d \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{n}=\frac{n}{2}[a+l] \text { where } l \text { is the last term }
\end{aligned}
$$

- Geometric Progression

$$
\begin{aligned}
& r=\frac{U_{2}}{U_{1}} \\
& U_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& S_{\infty}=\frac{a}{1-r}
\end{aligned}
$$

The Trigonometric Functions

- $\quad \pi$ radians $=180^{\circ}$
- Length of an arc: $\quad l=r \theta$
- Area of a sector: $\quad A=\frac{1}{2} r^{2} \theta$
- Area of a segment: $\quad A=\frac{1}{2} r^{2}(\theta-\sin \theta)$
[In these formulae, θ is measured in radians.]
- Small angle results:

$$
\begin{aligned}
& \sin x \rightarrow 0 \\
& \cos x \rightarrow 1 \\
& \tan x \rightarrow 0 \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\tan x}{x}=1
\end{aligned}
$$

- For $y=\sin n x$ and $y=\cos n x$ the period is $\frac{2 \pi}{n}$
- For $y=\sin n x$ the period is $\frac{\pi}{n}$

Logarithmic and Exponential Functions

- The Index Laws:

$$
\begin{aligned}
& a^{x} \times a^{y}=a^{x+y} \\
& a^{x} \div a^{y}=a^{x-y} \\
& \left(a^{x}\right)^{y}=a^{x y} \\
& a^{-x}=\frac{1}{a^{x}} \\
& a^{\frac{x}{y}}=\sqrt[y]{a^{x}} \\
& a^{0}=1
\end{aligned}
$$

- The logarithmic Laws:

If $\log _{a} b=c$ then $a^{c}=b$
$\log _{a} x+\log _{a} y=\log _{a} x y$
$\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)$
$\log _{a} x^{n}+n \log _{a} x$
$\log _{a} a=1$ and $\log _{a} 1=0$

- The Change of Base Result:

$$
\log _{a} b=\frac{\log _{e} b}{\log _{e} a}=\frac{\log _{10} b}{\log _{10} a}
$$

