Year 11 Extension $1 \quad$ Parameters Assignment

Date Due:

1. Derive the Cartesian equation for $x=4 p, y=2 p^{2}-2$.
2. By first finding the focal length, a, write down the parametric equations for:
(a) $x^{2}=20 y$
(b) $y=4 x^{2}$
3. (a) Derive the equation of the chord of the parabola joining $\mathrm{P}\left(10 p, 5 p^{2}\right)$ and $\mathrm{Q}\left(10 q, 5 q^{2}\right)$ on the parabola $x^{2}=20 y$.
(b) Show that the condition for PQ to be a focal chord is that $p q=-1$.
4. The points $\mathrm{P}\left(2 a p, a p^{2}\right)$ and $\mathrm{Q}\left(2 a q, a q^{2}\right)$ are the points on the parabola $x^{2}=4 a y$.
(a) Derive the equation of the tangent at P .
(b) Determine the coordinates of M , the point of the tangents at P and Q .
(c) Find the coordinates of R, the mid-point of the chord PQ.
(d) Show the parabola bisects MR.
5. $\quad \mathrm{PQ}$ is a focal chord of the parabola $x^{2}=4 a y$. The tangent at $\mathrm{P}\left(2 a p, a p^{2}\right)$ meets the latus rectum at L . If S is the focal of the parabola, prove that $\mathrm{SL}^{2}=\mathrm{SP} . \mathrm{SQ}$.
6. $\quad \mathrm{P}$ is the point with parameter p on the parabola $x^{2}=8 y$.
(a) Prove that the equation of the normal at P is $x+p y=2 p^{3}+4 p$.
(b) Show that the locus of R, the point of intersection of normals at P and Q , the endpoints of focal chord PQ , is given by $x^{2}=2(y-6)$.
7. $\quad \mathrm{P}\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$.
(a) Write down the equation of the tangent at P .
(b) Derive the equation of the perpendicular drawn from S , the focus, to the tangent at P . Note that this will not be the normal.
(c) Find the equation of the locus of N , the foot of the perpendicular from S , to the tangent.
8. Find the equation of the chord of contact drawn to $x^{2}=8 y$ from external point $(-2,-4)$.
9. $\quad \mathrm{P}\left(2 a t, a t^{2}\right)$ is a point on the parabola $x^{2}=4 a y$ and m is the tangent at P .
(a) Write down the equation of m.
(b) If m cuts the x -axis at T and the y -axis at R , find the coordinates of T and R .
(c) Find the ratio in which P divides TR.
(d) Show that m makes equal angles with the y -axis and with PS, where S is the focus.
10. Find the equation of the locus of the mid-points of all chords of the parabola passing through a point P , with parameter p, and the vertex of the parabola $x^{2}=2 y$.
