Parameters

• The parabola $x^2 = 4ay$

Can be written as x = 2at and $y = at^2$ where t is the parameter

• The Chord

Joining the points P(2ap, ap^2) and Q(2aq, aq^2) on the parabola $x^2 = 4ay$ has:

- gradient =
$$\frac{p+q}{2}$$

- equation
$$y - \frac{1}{2}(p+q)x + aqp = 0$$

-
$$pq = -1$$
 if it is a focal chord

- parameters of the endpoints are p, $\frac{-1}{p}$ if it is a focal chord

• Parametric Differentiation

Given that y = f(t) and x = f(t) then:

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

• Equation of tangent and normal to the parabola

- equation of tangent at
$$(x_1, y_1)$$
 is: $xx_1 = 2ay + 2ay_1$

- equation of the tangent at
$$t$$
: $y - tx + at^2 = 0$

- equation of the normal at
$$(x_1, y_1)$$
 is: $y - y_1 = \frac{-2a}{x_1}(x - x_1)$

- equation of the normal at 't' is:
$$x + ty = at^3 + 2at$$

- gradient of the tangent at the point where
$$x = t$$
 is: t

- gradient of the normal at the point where
$$x = t$$
 is: $-\frac{1}{t}$

• Further points on the parabola $x^2 = 4ay [P(2ap, ap^2) \text{ and } Q(2aq, aq^2)]$

Chord PQ;

- gradient =
$$\frac{p+q}{2}$$

- equation is
$$y - \frac{1}{2}(p + q)x + apq = 0$$

> Tangent at P;

- gradient =
$$p$$

- equation is
$$y - px + ap^2 = 0$$

- tangents at P and Q meet at
$$[a(p + q), apq]$$

- equation of the tangent at
$$(x_1, y_1)$$
 is: $x_1x = 2a(y + y_1)$

> Normal at P;

- gradient =
$$\frac{-1}{p}$$

- equation is
$$x + py = ap^3 + 2aq$$

- normals at P and Q meet at
$$[-apq(p+q), a(p^2+pq^2+q^2+2)]$$

- equation of the normal at
$$(x_1, y_1)$$
 is: $x_1 x = y - y_1 = \frac{-2a}{x_1}(x - x_1)$

Focal chord;

- endpoints have parameters p and
$$\frac{-1}{p}$$

• Equation of the chord of contact

$$x_1x = 2a(y + y_1)$$