Parameters

- The parabola $x^{2}=4 a y$

Can be written as $x=2 a t$ and $y=a t^{2}$ where t is the parameter

- The Chord

Joining the points $\mathrm{P}\left(2 a p, a p^{2}\right)$ and $\mathrm{Q}\left(2 a q, a q^{2}\right)$ on the parabola $x^{2}=4 a y$ has:

- gradient $=\frac{p+q}{2}$
- equation $y-1 / 2(p+q) x+a q p=0$
- $p q=-1$ if it is a focal chord
- parameters of the endpoints are $p, \frac{-1}{p}$ if it is a focal chord
- Parametric Differentiation

Given that $y=\mathrm{f}(t)$ and $x=\mathrm{f}(t)$ then:
$\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}$

- Equation of tangent and normal to the parabola
- equation of tangent at $\left(x_{1}, y_{1}\right)$ is: $x x_{1}=2 a y+2 a y_{1}$
- equation of the tangent at $t: y-t x+a t^{2}=0$
- equation of the normal at $\left(x_{1}, y_{1}\right)$ is: $y-y_{1}=\frac{-2 a}{x_{1}}\left(x-x_{1}\right)$
- equation of the normal at ' t ' is: $x+t y=a t^{3}+2 a t$
- gradient of the tangent at the point where $x=t$ is: t
- gradient of the normal at the point where $x=t$ is: $-\frac{1}{t}$
- Further points on the parabola $x^{2}=4 a y\left[\mathrm{P}\left(2 a p, a p^{2}\right)\right.$ and $\left.\mathrm{Q}\left(2 a q, a q^{2}\right)\right]$
$>$ Chord PQ;
- gradient $=\frac{p+q}{2}$
- equation is $y-1 / 2(p+q) x+a p q=0$
$>$ Tangent at P;
- gradient $=p$
- equation is $y-p x+a p^{2}=0$
- tangents at P and Q meet at $[a(p+q)$, apq]
- equation of the tangent at (x_{1}, y_{1}) is: $x_{1} x=2 a\left(y+y_{1}\right)$
$>$ Normal at \mathbf{P};
- gradient $=\frac{-1}{p}$
- equation is $x+p y=a p^{3}+2 a q$
- normals at P and Q meet at $\left[-a p q(p+q), a\left(p^{2}+p q^{2}+q^{2}+2\right)\right]$
- equation of the normal at $\left(x_{1}, y_{1}\right)$ is: $x_{1} x=y-y_{1}=\frac{-2 a}{x_{1}}\left(x-x_{1}\right)$

$>$ Focal chord;

- endpoints have parameters p and $\frac{-1}{p}$
- tangents at endpoints intersect at right angles on the directrix
- Equation of the chord of contact
$x_{1} x=2 a\left(y+y_{1}\right)$

