POLYNOMIALS TEST

1. If $\mathrm{P}(x)=x^{4}-4 x^{2}+3$, find the zeros of $\mathrm{P}(x)$ over the field of:
(a) rationals
(b) reals
(c) complex numbers
2. Express $\mathrm{P}(x)=x^{4}+4 x^{3}-3 x^{2}+8 x-10$ as a product of irreducible factors over the complex field.
3. If $\mathrm{P}(x)=4 x^{3}+15 x^{2}+12 x-4$ has a double root, find all the roots of $\mathrm{P}(x)$ over the real field.
4. Find the remainder when $\mathrm{P}(x)=x^{3}+2 x^{2}-1$ is divided by:
(a) $x-i$
(b) $x^{2}+1$
5. When $\mathrm{P}(x)=x^{4}+a x^{2}+b x$ is divided by $x^{2}+1$, the remainder is $x+2$. Find the values of a and b.
6. $\mathrm{P}(x)$ is an even monic polynomial of degree 4 with integer coefficients. If $\sqrt{2}$ is a zero of $\mathrm{P}(x)$ and the constant term is 6 , find $\mathrm{P}(x)$ in factored form.
7. The equation $x^{3}+x^{2}-2 x-3=0$ has roots α, β, γ. Find the equation with roots:
(a) $2 \alpha, 2 \beta, 2 \gamma$
(b) $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$
(c) $\alpha-2, \beta-2, \gamma-2$
8. The equation $x^{3}+2 x+1=0$ has roots α, β, γ. Evaluate:
(a) $\alpha+\beta+\gamma$
(b) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(c) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(d) $\alpha^{4}+\beta^{4}+\gamma^{4}$
