POLYNOMIALS TEST

- 1. If $P(x) = x^4 4x^2 + 3$, find the zeros of P(x) over the field of:
 - (a) rationals
 - (b) reals
 - (c) complex numbers
- 2. Express $P(x) = x^4 + 4x^3 3x^2 + 8x 10$ as a product of irreducible factors over the complex field.
- 3. If $P(x) = 4x^3 + 15x^2 + 12x 4$ has a double root, find all the roots of P(x) over the real field.
- 4. Find the remainder when $P(x) = x^3 + 2x^2 1$ is divided by: (a) x - i(b) $x^2 + 1$
- 5. When $P(x) = x^4 + ax^2 + bx$ is divided by $x^2 + 1$, the remainder is x + 2. Find the values of *a* and *b*.
- 6. P(x) is an even monic polynomial of degree 4 with integer coefficients. If $\sqrt{2}$ is a zero of P(x) and the constant term is 6, find P(x) in factored form.
- 7. The equation $x^3 + x^2 2x 3 = 0$ has roots α , β , γ . Find the equation with roots:
 - (a) 2α , 2β , 2γ
 - (b) $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$
 - (c) $\alpha = 2, \beta = 2, \gamma = 2$
- 8. The equation $x^3 + 2x + 1 = 0$ has roots α , β , γ . Evaluate:
 - (a) $\alpha + \beta + \gamma$
 - (b) $\alpha^2 + \beta^2 + \gamma^2$
 - (c) $\alpha^3 + \beta^3 + \gamma^3$
 - (d) $\alpha^4 + \beta^4 + \gamma^4$