POLYNOMIALS

EXERCISE 1

1. For each of the following polynomials, state the constant term, the leading term, the leading coefficient and weather the polynomial is monic, the degree.
(a) $3 x^{2}$
(b) 7
(c) 0
(d) $1-x$
(e) $x^{2}-2 x-3 \quad$ (f) $\quad(x+2)^{2}-(x-2)^{2}$
(i) $x\left(x^{2}+x-1\right)-x\left(x^{2}-x+1\right)$
(h) $\quad(x+1)^{3}-(x-1)^{3}$
(j) $\quad(x+1)^{3}-(x-1)^{3}$
2. Explain why each of the following is not a polynomial.
(a) $7 x^{2}-5 x^{-3}+3$
(b) $4 \sqrt{x}-2 x-5$
(c) $\quad(x+3)^{3}-(x-1)^{2 / 3}$
3. If $\mathrm{A}(x)=2 x+3, \mathrm{~B}(x)=x^{2}-x+2, \mathrm{C}(x)=(x-2)^{2}$, write down the polynomials:
(a) $\mathrm{A}(x)+\mathrm{B}(x)$
(b) $\quad \mathrm{B}(x)-\mathrm{C}(x)$
(c) $\quad \mathrm{A}(x) . \mathrm{B}(x)$
(d) $\mathrm{A}(x)[\mathrm{B}(x)+\mathrm{C}(x)]$
4. State the smallest field ($\mathrm{Q}, \mathrm{R}, \mathrm{C}$) over which the polynomials are defined.
(a) $3 x^{2}-7 x+2$
(b) $(3+2 i) x^{3}-7 x+5$
(c) $\quad 2 \sqrt{3} x^{4}+(1+\sqrt{2}) x-8$
(d) $3+4 x-5 \sqrt[3]{2} x^{3}$
(e) $i x+7$
(f) $1 / 4 x+8 \sqrt{3}$
(g) 3
(h) $2 / 3 x^{7}-5 i x+9$
(i) $(2+3 \sqrt{2}) x^{2}+(3+7 \sqrt{2})$
5. (a) If $x^{2}=a(x-1)^{2}+b(x-1)+\mathrm{c}$ find a, b, c
(b) If $2(x-1)^{2}=c\left(x^{2}+1\right)+d x$ find c, d
(c) If $a_{0}+a_{1} x+a_{2} x^{2}=3 x^{2}-5$ evaluate a_{0}, a_{1}, a_{2}
(d) If the polynomials $(a+2 b)+(b+3 c) x-(2 b+5 c) s^{2}, 5+11 x-19 x^{2}$ are equal, find a, b, c
6. (a) If $\mathrm{P}(x)=x^{2}-4, \mathrm{Q}(x)=x+2$ and $\mathrm{P}(x)=\mathrm{Q}(x)$. $\mathrm{R}(x)$, find $\mathrm{R}(x)$
(b) If $a(x)=x^{3}-8, b(x)=x-2$ and $q(x)=x^{2}-2 x+2$, find $r(x)$ where $a(x)=b(x) . q(x)+r(x)$
(c) If $\mathrm{A}(x)=4 x^{2}+3 x-1, \mathrm{~B}(x)=4 x-1, \mathrm{C}(x)=k x+l$, where k, l are constants, find k, l if $\mathrm{A}(x)=\mathrm{B}(x) . \mathrm{C}$
7. For the polynomial $(a+3) x^{8}-(7-2 b) x^{5}+(12-6 c)$, find the constants a, b, c if the polynomial is:
(a) monic
(b) of zero degree
(c) a zero polynomial

EXERCISE 2

1. Reduce where possible each of the following polynomials into irreducible factors over the field of:
(i) rationals Q
(ii) reals R
(iii) complex numbers C
(a) $x^{4}-1$
(b) $x^{4}-9$
(c) $x^{2}-x-6$
(d) $x^{2}+4 x+2$
(e) $x^{2}+2 x+5$
(f) $3 x^{2}-2 x-4$
(g) $3 x^{2}-2 x+4$
(h) $x^{3}-27$
(i) $x^{3}+27$
2. Verify that $(x+2)$ is a factor of $x^{3}-x^{2}+4$ and hence find the prime factors over each of the fields Q, R, C.
3. Show that:
(a) $x^{4}-7 x^{2}+1=\left(x^{2}+1\right)^{2}-9 x^{2}$
(b) $x^{6}-64=\left(x^{3}-8\right)\left(x^{3}+8\right)$
(c) $x^{4}-x^{2}-12=\left(x^{2}-4\right)\left(x^{2}+3\right)$
(d) $x^{4}-x^{2}+4 x-4=x^{4}-(x-2)^{2}$
and hence reduce each of these polynomials into prime polynomials over the field of real numbers.
4. Reduce each polynomial into irreducible factors over:
(i) Q
(ii) R
(iii) C
(a) $x^{4}-6 x^{2}+8$
(b) $x^{4}+x^{2}-20$
(c) $x^{4}-10 x^{2}+21$
(d) $x^{4}-3 x^{2}-28$
(e) $x^{4}+7 x^{2}+6$
(f) $x^{6}-9 x^{3}+8$
(g) $x^{8}-6 x^{4}+5$
(h) $\left(x^{2}+3 x\right)^{2}-\left(x^{2}+3 x\right)+20$
(i) $\left(2 x^{2}+3 x\right)^{2}+3\left(2 x^{2}+3 x\right)+2$
(j) $\quad\left(x^{2}+5 x\right)^{2}-4$

EXERCISE 3

1. Show that $x^{2}+6 x+8$ properly divides $\mathrm{P}(x)=x^{3}+5 x^{2}+2 x-8$, and hence reduce $\mathrm{P}(x)$ into Irreducible factors over the field of rationals.
2. Find polynomials $\mathrm{Q}(x), \mathrm{R}(x)$ over the field F stated, such that $\mathrm{A}(x)=\mathrm{Q}(x) \cdot \mathrm{B}(x)+\mathrm{R}(x)$

Where $\mathrm{A}(x), \mathrm{B}(x)$ are polynomials over F and $\mathrm{R}(x)=0$ or $0 \leq \operatorname{deg} \mathrm{R}(x) \leq \operatorname{deg} \mathrm{B}(x)$ when:
(a) $\mathrm{A}(x)=x^{3}-5 x^{2}+7 x-2$,
$\mathrm{B}(x)=x+3$; polynomials over Q
(b) $\mathrm{A}(x)=3 x^{4}+7 x^{3}-8$,
$\mathrm{B}(x)=x^{2}+2 ;$ polynomials over Q
(c) $\mathrm{A}(x)=2 \sqrt{3} x^{5}-4 x^{2}-31$,
$\mathrm{B}(x)=x-\sqrt{3}$; polynomials over R
(d) $\mathrm{A}(x)=x^{3}+5 i x^{2}-7 i x-3$,
$\mathrm{B}(x)=x-2 i ; \quad$ polynomials over C

EXERCISE 4

1. Without dividing, find the remainder when each of the following is divided by the linear polynomial.
(a) $\left(x^{3}-5 x^{2}-4 x+7\right)$ by $(x-1)$
(b) $\left(x^{4}-9 x^{2}+3 x+2\right)$ by $(x+3)$
(c) $\quad\left(x^{2}+x-1\right)$ by $(x+i)$
(d) $\left(x^{3}+x^{2}+x+1\right)$ by $(x+1+i)$
2. Show that $(2 x-1)$ is a factor of $6 x^{3}+13 x^{2}+2 x-5$. Hence factorise the polynomial to irreducible factors over the rational field Q . What are the zeros of this polynomial in Q ?
3. (a) If $x^{3}-a x^{2}+1$ leaves a remainder of -2 when divided by $(x-1)$, find a.
(b) Find a if $(x+1)$ divides $x^{3}-a x^{2}-2 a x+8$.
(c) $\mathrm{f}(y)=y^{3}-b y^{2}-b y+2 b$. Find b if $\mathrm{f}(y)$ leaves a remainder of 12 when divided by $(y-2)$.
(d) The polynomial $\mathrm{p}(s)=a x^{2}+b x-6$ is divisible by $x+1$. If $a+b=20$, find a and b.
(e) $x^{3}+a x^{2}-2 x+$ b has $x+1$ as a factor and leaves a remainder of 4 when divided by $x-3$. Find a and b.
4. A polynomial $\mathrm{P}(x)$ has roots $2,1+i, 1-i$. What are three factors of $\mathrm{P}(x)$? If it is known that $\mathrm{P}(x)$ is a monic polynomial of degree 3 , find $\mathrm{P}(x)$. If $\mathrm{P}(x)$ is a polynomial of degree 3 with a leading coefficient of 5 , find $\mathrm{P}(x)$.
5. Determine the rational zeros of the polynomial $\mathrm{f}(x)=4 x^{4}+8 x^{3}+7 x^{2}+8 x+3$. Hence find the decomposition of $\mathrm{f}(x)$ over the field of \quad (a) $\mathrm{Q} \quad$ (b) C .

EXERCISE 5

1. Use the factor theorem to show that $x-i$ is a factor of $\mathrm{P}(x)=x^{4}+3 x^{3}+6 x^{2}+3 x+5$.

Name one other factor of $\mathrm{P}(x)$. Hence reduce $\mathrm{P}(x)$ to linear factors over the complex field.
2. Show that $1-2 i$ is a zero of the polynomial $\mathrm{p}(x)=x^{3}-5 x^{2}+11 x-15$. Hence resolve $\mathrm{p}(x)$ into irreducible factors over the field of
(a) C (b) R .
3. Show that $1+i$ is a zero of the polynomial $x^{3}-x^{2}+2$ and find the other two zeros in C .
4. If $x-2-2 i$ is a factor of $x^{3}-a x^{2}+20 x-24$, find a and the other zeros over C .
5. (a) $3+\sqrt{5}$ is one root of a polynomial $\mathrm{P}(x)$, which has rational coefficients.

State one other root of $\mathrm{P}(x)$
(b) $\sqrt{3}$ is one root of a polynomial $\mathrm{Q}(x)$ with rational coefficients. State one other root of $\mathrm{Q}(x)$.
(c) $3-2 \sqrt{5}$ is one root of a polynomial $\mathrm{R}(x)$ with rational coefficients. State one other root of $\mathrm{R}(x)$.
6. Find the polynomial of the least degree, with integral coeffiencts which have no common factor, having the roots
(a) $\sqrt{5}$ and $2-i$
(b) $3-\sqrt{2}$ and $3-2 i$

EXERCISE 6

1. Find the roots of the polynomials:
(a) $16 x^{3}-12 x^{2}+1$ given that it has a 2 -fold root
(b) $x^{4}-6 x^{3}+12 x^{2}-10 x+3$ given that it has a root of multiplicity 3
(c) $\quad x^{5}+2 x^{4}-2 x^{3}-8 s^{2}-7 x-2$, if it has a 4 -fold root
2. Given that the polynomial $\mathrm{P}(x)=x^{4}+x^{2}+6 x+4$ has a rational root of multiplicity 2 , find all the roots of $\mathrm{P}(x)$ over the complex field.
3. Find the value of c if the polynomial $5 x^{5}-3 x^{3}+c$ has a repeated positive root.
4. Prove that $a x^{2}+b x+c$ has a double root if $b^{2}-4 a c=0$.
5. Find the condition that $\mathrm{f}(x)=x^{3}-3 a x+b$ has repeated factors.

EXERCISE 7

1. If α, β, γ are the roots of the polynomial $x^{3}-x^{2}+5 x-3$ in the field of complex numbers, find the value of:
(a) $\quad \Sigma \alpha$
(b) $\quad \Sigma \alpha \beta$
(c) $\quad \Sigma \alpha \beta \gamma$
(d) $\quad \Sigma \alpha^{2}$
(e) $\Sigma \alpha^{3}$
(f) $\quad \Sigma \alpha^{4}$
(g) $\quad \Sigma \alpha^{5}$
(h) $\quad \Sigma \frac{1}{\alpha}$
(i) $\quad \Sigma \alpha^{-2}$
(k) $\quad \Sigma \alpha^{2} \beta^{2}$
(k) $\quad(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$
2. If p, q, r are the zeros in the field of complex numbers of the polynomial $2 x^{2}-3 x-$, find the values of:
(a) $(p+1)(q+1)(r+1)$
(b) $(p+q-r)(q+r-p)(p+r-q)$
(c) $\quad \Sigma(p q)^{-1}$
3. If α, β, γ are the roots in a field F of the polynomial $x^{3}+a x+\mathrm{b}$, which is reducible to linear factors of F , find in terms of a and b :
(a) $\quad \Sigma \alpha$
(b) $\Sigma \alpha^{2}$
(c) $\Sigma \alpha^{3}$
(d) $\quad \Sigma \alpha^{4}$
(e) $\Sigma \alpha^{2} \beta$
(f) $\quad \Sigma \alpha^{2} \beta^{2}$
(g) $\quad \Sigma \alpha^{3}(\beta+\gamma)$
(h) $\quad \Sigma(\alpha+\beta)^{-1}$
4. If a, b, c, d are the roots of the polynomial $y^{4}-4 y^{2}-y+2$, find the values of:
(a) Σa
(b) $\Sigma a b$
(c) $\Sigma a b c$
(d) $a b c d$
(e) Σa^{-1}
(f) $\quad \Sigma a^{2}$
(g) $\quad \Sigma a^{2} b \quad\left[\right.$ first prove $\left.\Sigma a^{2} b=(\Sigma a)(\Sigma a b)-3(\Sigma a b c)\right]$
(h) $\Sigma a^{3} \quad\left[\right.$ first prove $\left.\Sigma a^{3}=\left(\Sigma a^{2}\right)(\Sigma a)-\Sigma a^{2} b\right]$
(1) Use the factor theorem to factorise $y^{4}-4 y^{2}-y+2$ and state in which fields the results in (a) to (k) are valid.

EXERCISE 8

1. If α, β, γ are the roots of $x^{3}+2 x^{2}-2 x+3=0$, form the equation whose roots are:
(a) $\frac{2}{\alpha}, \frac{2}{\beta}, \frac{2}{\gamma}$
(b) $2 \alpha, 2 \beta, 2 \gamma$
(c) $\alpha+1, \beta+1, \gamma+1$
(d) $\alpha-2, \beta-2, \gamma-2$
(e) $\alpha^{2}, \beta^{2}, \gamma^{2}$
(f) $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$
2. If α, β, γ are the roots of $2 x^{3}+3 x^{2}-x-1=0$, form the equation whose roots are:
(a) $\alpha+2, \beta+2, \gamma+2$
(b) $\frac{1}{a+2}, \frac{1}{\beta+2}, \frac{1}{\gamma+2}$ [Hint: use (a)]
(c) $\alpha^{2}, \beta^{2}, \gamma^{2}$
3. If α, β, γ are the roots of $a x^{3}+b x^{2}+c x+\mathrm{d}=0$, form the equation whose roots are $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$ and hence evaluate:
(a) $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$
(b) $\quad \alpha^{-1} \beta^{-1}+\beta^{-1} \gamma^{-1}+\gamma^{-1} \alpha^{-1}$
(c) $\alpha^{-2}+\beta^{-2}+\gamma^{-2}$
4. If $\alpha, \beta, \gamma, \delta$ are the roots of $x^{4}-x^{2}+2 x+3=0$, form the equation whose roots are:
(a) $2 \alpha, 2 \beta, 2 \gamma, 2 \delta$
(b) $\alpha^{-1}, \beta^{-1}, \gamma^{-1}, \delta^{-1}$
(c) $\alpha^{2}, \beta^{2}, \gamma^{2}, \delta^{2}$
5. α, β, γ are the roots of $x^{3}-2 x+3=0$
(a) From the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$
(b) Using the result of (a), now form the equation with roots $\alpha^{2}+1, \beta^{2}+1, \gamma^{2}+1$
(c) Hence evaluate $\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)\left(\gamma^{2}+1\right)$
6. Use the forth degree equation $\mathrm{ax}^{4}+b x^{3}+c x^{2}+d x+e=0$ whose roots are $\alpha, \beta, \gamma, \delta$ to verify that:
(a) The equation $\mathrm{P}\left(\frac{x}{m}\right)=0$ has roots m times those of $\mathrm{P}(x)=0$
(b) The equation $\mathrm{P}\left(\frac{1}{x}\right)=0$ has roots which are reciprocals of those $\mathrm{P}(x)=0$
(c) The equation $\mathrm{P}(x+k)=0$ has roots which are k less than those of $\mathrm{P}(x)=0$

EXERCISE 9

1. Express $\cos 5 \theta$ as a polynomial in $\cos \theta$, and obtain a similar expression for $\sin 5 \theta$ as a polynomial in $\sin \theta$.
(a) Solve the equation $\cos 5 \theta=1$ for $0<\theta 2 \pi$ and hence find the roots of the equation $16 x^{5}-20 x^{3}+5 x-1=0$. Hence prove that $\cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=\frac{1}{4}$ and $\cos \frac{\pi}{5}-\cos \frac{2 \pi}{5}=\frac{1}{2}$.
(b) Solve the equation $\cos 5 \theta=0$ for $0<\theta 2 \pi$ and hence find the roots of the equation $16 x^{4}-20 x^{5}+5=0$. Determine the exact value for $\cos \frac{\pi}{10} \cos \frac{3 \pi}{10}$ and $\cos ^{2} \frac{\pi}{10}-\cos ^{2} \frac{3 \pi}{10}$.
(c) Solve the equation $\sin 5 \theta=1$ for $0<\theta 2 \pi$ and hence find the roots of the equation $16 x^{4}+16 x^{3}-4 x^{2}-4 x+1=0$. Determine the exact value of $\sin \frac{\pi}{10} \sin \frac{3 \pi}{10}$.
(d) Show that the roots of the equation $16 x^{4}-20 x^{2}+5=0$ are $x= \pm \sin \frac{\pi}{5} \sin \frac{2 \pi}{5}$. and prove that $\sin ^{2} \frac{\pi}{5}$ $\sin ^{2} \frac{2 \pi}{5}=\frac{5}{4}$.
2. Prove that $\cos 7 \theta=64 \cos ^{7} \theta-112 \cos ^{5} \theta-7 \cos \theta$.
(a) Hence find the roots of the equation $64 x^{6}-112 x^{4}+56 x^{2}-7=0$. Deduce that $\cos \frac{\pi}{14} \cdot \cos \frac{3 \pi}{14} \cdot \cos \frac{5 \pi}{14}=\frac{\sqrt{7}}{8}$ and $\cos ^{2} \frac{\pi}{14}+\cos ^{2} \frac{3 \pi}{14}+\cos ^{2} \frac{5 \pi}{14}=\frac{7}{8}$.
(b) Solve the equation $\cos 7 \theta=1$ for $0<\theta 2 \pi$, and hence find the roots of the equation $64 x^{7}-112 x^{5}+56 x^{3}-7=1$. Deduce that $\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}=\frac{1}{2}$ and $\cos \frac{\pi}{7} \cdot \cos \frac{\pi}{7} \cdot \cos \frac{5 \pi}{7}=-\frac{5}{4}$.
