Rates of Change

- Practical Problems

If we know the derivative of a function, we can find the equation for that function by integrating If we know a value for the function under conditions, such as $x=2$, we can find the constant C and thus the actual equation

If $y=f(x)$ then the rates of change of y and x with respect to time t can be compared using the result:

$$
\frac{d y}{d t}=\frac{d y}{d x} \times \frac{d x}{d t}
$$

- Exponential law of growth and decay

The solution $\underline{d Q}=k Q$ can be written as $\mathrm{Q}=\mathrm{Q}_{0} \mathrm{e}^{\mathrm{kt}}$
dt
where Q_{0} is the initial value of Q .
The exponential growth formula is: $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{\mathrm{kt}}$
The exponential decay formula is: $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\mathrm{kt}}$
where N_{0} is the initial value of N (ie when $\mathrm{t}=0$ and k is the growth or decay constant for a particular population)

- Further Growth and Decay

If the rate of change of N is given by:
$\underline{\mathrm{dN}}=\mathrm{k}(\mathrm{N}-\mathrm{P})$
dt
where K and P are constants, then the solution is given by:
$\mathrm{N}=\mathrm{P}$ (trival case)
$\mathrm{N}=\mathrm{P}+\mathrm{Ae}^{\mathrm{kt}}$ where A is a constant

