Real Function Revision

1. Classify each of the following functions below:
(a) $x^{2}+y^{2}=9$
(g) $y=\frac{1}{x}+3$
(m) $y=2 x$
(b) $y=\frac{2}{x}$
(h) $x y=-4$
(n) $y=2^{-x}$
(c) $y=3^{-x}$
(i) $x=3$
(o) $y=(x+3)(x-1)$
(d) $x+2 y=4$
(j) $y=-\sqrt{25-x^{2}}$
(p) $(x-3)^{2}+y^{2}=20$
(e) $y=x^{2}-2 x$
(k) $y=4^{-x}$
(f) $y=\sqrt{16-x^{2}}$
(l) $y=7$
2. Write down the domain (D) and range (R) of question 1 for:
(a), (d), (g), (i), (j), (h)
3. Determine whether the function $y=x^{3}-2 x$ is odd, even or neither. Show working.
4. Sketch the region, of which the following inequalities hold simultaneously:
$y \leq \sqrt{9-x^{2}}, y \geq 0$ and $x<1$
5. If $\mathrm{f}(x)=x^{3}-2 x$, find:
(i) $f(2)$
(ii) $\mathrm{f}(-1)$
6. Sketch the graph:
$\mathrm{f}(x)=\left\{\begin{array}{c}2 x, x \geq 1 \\ x^{2}-3, x<1\end{array}\right.$
7. Sketch the graph:
$\mathrm{f}(x)=\left\{\begin{array}{c}3, x>3 \\ x^{2}, 1 \leq x \leq 3 \\ 2-x, x<1\end{array}\right.$
