Real Function Revision

1. Classify each of the following functions below:

(a)
$$x^2 + y^2 = 9$$

(g)
$$y = \frac{1}{x} + 3$$

(m)
$$y = 2x$$

(b)
$$y = \frac{2}{x}$$

(c) $y = 3^{-x}$

(h)
$$xy = -4$$

(n)
$$y = 2^{-x}$$

(c)
$$y = 3^{-}$$

(i)
$$x = 3$$

(o)
$$y = (x+3)(x-1)$$

(d)
$$x + 2y = 4$$

(h)
$$xy = -4$$

(i) $x = 3$
(j) $y = -\sqrt{25 - x^2}$
(k) $y = 4^{-x}$

(o)
$$y = (x+3)(x-1)$$

(p) $(x-3)^2 + y^2 = 20$

(d)
$$x + 2y = 4$$

(e) $y = x^2 - 2x$
(f) $y = \sqrt{16 - x^2}$

(k)
$$y = 4$$

(l) $y = 7$

2. Write down the domain (D) and range (R) of question 1 for:

(a), (d), (g), (i), (j), (h)

3. Determine whether the function $y = x^3 - 2x$ is odd, even or neither. Show working.

4. Sketch the region, of which the following inequalities hold simultaneously: $y \le \sqrt{9 - x^2}, y \ge 0 \text{ and } x < 1$

5. If $f(x) = x^3 - 2x$, find:

6. Sketch the graph:

$$f(x) = \begin{cases} 2x, & x \ge 1\\ x^2 - 3, & x < 1 \end{cases}$$

7. Sketch the graph:

$$f(x) = \begin{cases} 3, x > 3 \\ x^2, 1 \le x \le 3 \\ 2 - x, x < 1 \end{cases}$$