Summary

$$
\text { number of moles } \quad n=\frac{\text { number of particles }(N)}{\text { number of particles in one mole }}
$$

- Use this formula to calculate number of moles (n) or number of particles (atoms, molecules etc)
- Sample question (calculating particles): How many atoms are there in 3.0 mol of copper?

$$
\begin{gathered}
\text { number of moles } n=\frac{\text { mass }(m) \text { in grams }}{\text { number of particles in one mole }(M)} \\
n=\frac{m}{M}
\end{gathered}
$$

- Use this formula to calculate number of moles (n) or mass (g)
- Sample question (calculating moles): Calculate the number of moles in 20 g of sodium sulfide
- Sample question (calculating mass): What is the mass 4.6 mol of magnesium chloride?

$$
\% A \text { in a compound } n=\frac{\text { mass of } A \text { in } 1 \text { mole of the compound }}{\text { mass of } 1 \text { mole of the compound }} \times 100 \%
$$

- Use this formula to calculate the percentage composition of a substance in a compound
- Sample question: Calculate the percentage composition of Fe in $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Molecular formula: specifies the actual number of atoms of each element in a molecule Example: hydrogen peroxide: $\mathrm{H}_{2} \mathrm{O}_{2}$

Empirical formula: specifies the simplest whole number ratio of each element
Example: hydrogen peroxide: HO

Chemical equations can tell us:

- the number of MOLES of reactants and products in a chemical reaction
- the relative MASSES of reactants and products in a chemical reaction

Example:	$\mathrm{N}_{2}(\mathrm{~g})$ 1 mole 28 g	+		
		$3 \mathrm{H}_{2}(\mathrm{~g})$ 3 mole 6 g	\longrightarrow	$2 \mathrm{NH}_{3}(\mathrm{~g})$
:---:				
2 mole				
34 g				

Sample question: The equation for the burning of Mg in air is $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}(\mathrm{s})$. If 8.0mol of Mg was burnt, calculate the number of moles of oxygen needed to completely react with it.

Mass calculations from chemical equations:
Step 1: Write the balanced chemical equation
Step 2: Calculate the number of moles of the given substance
Step 3: Use the chemical equation to determine
Number of moles of required substance
Number of moles of given substance
This is simply the ratio of the coefficients in the equation.
Step 4: Use this ratio to calculate the number of moles of the required substance.
Step 5: Calculate the mass of the required substance

Sample question: The equation for the production of glucose is:
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+\mathrm{CO}(\mathrm{g})$
Calculate the mass of CO2 required to produce 3.61 grams of glucose.

