The Trigonometric Functions

• Radians and degrees

-
$$1^{\circ} = \frac{\pi}{180}$$
 radians *ie to convert to radians, multiply by* $\frac{\pi}{180}$
- 1 radian = $\frac{180}{\pi}$ *ie to convert to degrees, multiply by* $\frac{180}{\pi}$

- Arc length $l = r\theta$
- Area of a sector $A = \frac{1}{2}r^{2}\theta$
- Area of Minor Segment Cut off by a Chord $A = \frac{1}{2}r^{2}(\theta - \sin\theta)$
- Approximations to sinx, cosx, tanx, when x is small - If x is small, $\sin x \approx x \approx \tan x$ and $\cos x \approx 1$ - If $0 < x < \frac{\pi}{2}$, than $\sin x < x < \tan x$ - $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{x \to 0} \frac{\tan x}{x} = 1$
- Differentiation of Trigonometric Functions
 y' (sinx) = cosx
 - y' (cosx) = $-\sin x$ - y' (tanx) = $\sec^2 x$
- Integration of Trigonometric Functions

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin ax \, dx = -\cos x + C$$

$$\int \sec^2 ax \, dx = \tan x + C$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax$$

* Note: When Integrating trigonometric functions where the angle is in degrees, you must change to radians first (ie. multiply by $\frac{\pi}{180}$)

- Integration of $\sin^2 x$ and $\cos^2 x$ - $\int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C$
 - $\int \sin x \, dx = \frac{1}{2}x \frac{1}{4}\sin 2x + C$ - $\int \cos^2 x \, dx = \frac{1}{2}x + \frac{1}{4}\sin 2x + C$