The Trigonometric Functions

- Radians and degrees
$-1^{\circ}=\frac{\pi}{180}$ radians ie to convert to radians, multiply by $\frac{\pi}{180}$
-1 radian $=\frac{180}{\pi} \quad$ ie to convert to degrees, multiply by $\frac{180}{\pi}$
- Arc length
$l=r \theta$
- Area of a sector
$\mathrm{A}=\frac{1}{2} r^{2} \theta$
- Area of Minor Segment Cut off by a Chord
$\mathrm{A}=\frac{1}{2} r^{2}(\theta-\sin \theta)$
- Approximations to sinx, cosx, tanx, when x is small
- If x is small, $\sin x \approx x \approx \tan x$ and $\cos x \approx 1$
- If $0<x<\frac{\pi}{2}$, than $\sin x<x<\tan x$
$-\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
- Differentiation of Trigonometric Functions
- $y^{\prime}(\sin x)=\cos x$
$-y^{\prime}(\cos x)=-\sin x$
$-y^{\prime}(\tan x)=\sec ^{2} x$
- Integration of Trigonometric Functions

$$
\begin{array}{ll}
\int \cos x d x & =\sin x+\mathrm{C} \\
\int \sin a x d x & =-\cos x+\mathrm{C} \\
\int \sec ^{2} a x d x & =\tan x+\mathrm{C} \\
\int \cos a x d x & =\frac{1}{a} \sin a x \\
\int \sin a x d x & =-\frac{1}{a} \cos a x \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x
\end{array}
$$

* Note: When Integrating trigonometric functions where the angle is in degrees, you must change to radians first (ie. multiply by $\frac{\pi}{180}$)
- Integration of $\sin ^{2} \boldsymbol{x}$ and $\cos ^{2} \boldsymbol{x}$
$-\int \sin ^{2} x \mathrm{dx}=1 / 2 x-1 / 4 \sin 2 x+\mathrm{C}$
$-\int \cos ^{2} x \mathrm{dx}=1 / 2 x+1 / 4 \sin 2 x+\mathrm{C}$

