Year 12 Extension 1 Trigonometric Functions Assignment Date Due:

1. Convert: (a) $\frac{3 \pi}{2}$ into degrees \quad (b) 50° into radians, correct to 2 decimal places
2. Find the exact value of:
(a) $\cos \frac{11 \pi}{2}$
(b) $\tan \left(-\frac{3 \pi}{2}\right)$
3. Solve for $0 \leq \theta \leq 2 \pi$:
(a) $\sin x=\frac{1}{\sqrt{2}}$
(b) $\quad \cos 2 x=\frac{1}{2}$
4. Find the length of the arc formed if an angle of $\frac{\pi}{4}$ is subtended at the centre of the circle with radius 5 m .
5. The area of a circle is $450 \mathrm{~cm}^{2}$. Find in degrees and minutes, the angle subtended at the centre of the circle by a 2.7 cm arc.
6. The area of the sector of a circle that is subtended by an angle of $\frac{\pi}{3}$ at the centre is $6 \pi \mathrm{~m}^{2}$. Find the radius of the circle.
7. (a) One the same number plane, sketch the curves $y=3 \sin x$ and $y=\cos 2 x$ for $0 \leq \theta \leq 2 \pi$
(b) How many solutions are there for $3 \sin x=\cos 2 x$ in this domain?
8. Find the values of: (a) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
(b) $\lim _{x \rightarrow 0} \frac{4 x}{\tan 3 x}$
9. Differentiate:
(a) $x^{3} \cos 2 x$
(b) $\frac{3 x}{\sin x}$
(c) $\sqrt{\tan 2 x}$
10. Find the primitive function of: (a) $\sin (2 x+3)$ (b) $1-\cos 3 x \quad$ (c) $\sec ^{2} 2 x-\sin 4 x$
11. Evaluate the following:
(a) $\int_{0}^{1}\left(\cos \frac{\pi}{2} x\right) d x$
(b) $\int_{0}^{\frac{\pi}{2}}(\sin x+\cos x) d x$
12. Find the area of the curve $y=2 \cos 3 x$ between $x=0$ and $x=\frac{\pi}{6}$.
13. Differentiate $\tan ^{3} x$ and hence find $\int_{0}^{\frac{\pi}{4}} \tan ^{2} x \sec ^{2} x d x$.
14. The range of a shell fired from a gun having an angle of elevation of θ radians is given by $R=\frac{V^{2}}{g} \sin 2 \theta$ where V and g are constants. For what angle of elevation will the range be a maximum? (Hint: you must first find $\left.\frac{d R}{d \theta}\right)$.
