DAPTO HIGH SHCOOL

YEAR 11
EXTENSION 1 MATHEMATICS
PRELIMINARY EXAMINATION
2006
Time Allowed - 2 hours
(plus 5 minutes reading time)
Directions:

- Attempt ALL questions
- All questions are of equal value
- All necessary working should be shown
- Board-approved calculators may be used

Question 1 (12 marks)
(a) Differentiate with respect to x
(i) $\left(x^{2}-5 x\right)^{4} \quad \mathbf{2}$
(ii) $\frac{2 x-3}{5-x}$
(iii) $x^{n^{2}} 1$
(iv) $\left(x^{2}-5 x+7\right)(3 x+2) \quad 2$
(b) Given the function $y=10 x^{3}-4$. Find the value(s) of x for which $\frac{d y}{d x}=10$.
(c) Find the gradient of the normal to the curve $y=\frac{1}{\sqrt{\mathrm{x}^{2}-3}}$ at the point $(2,1)$

Question 2 (12 marks)
(a) If α and β are the roots of the quadratic equation $2 x^{2}-3 x-1=0$. Evaluate
(i) $\alpha+\beta \quad 1$
(ii) $\frac{1}{\alpha \beta}$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(b) Given that $x^{2}+7 x-3 \equiv a(x+1)^{2}+\mathrm{b}(x+1)+c$, find the values of a, b and c
(c) Show that for $k x^{2}+21 x+m=0$, the roots are equal if $l^{2}=k m$
(d) Solve $x^{6}+26 x^{2}-27=0$

Question 3 (12 marks)
(a) For the parabola $x^{2}=10 y$, find
(i) the coordinates of the focus
(ii) the equation of the directrix
(iii) the length of the latus rectum
(b) Find the coordinates of the focus of the parabola $x^{2}=8(y-1)$
(c) A curve has parametric equations $x=\frac{t}{2}, y=3 t^{2}$. Find the cartesian equation 2 for this curve.
(d) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The equation of the normal to the parabola at P is $x+p y=2 a p+a p^{3}$ and the equation of the normal at Q is similarly given by $x+q y=2 a q+a q^{3}$.
(i) Show that the normals at P and Q intersect at the point R whose coordinates are ($-a p q[p+q], a\left[p^{2}+p q+q^{2}+2\right]$).
(ii) The equation of the chord $P Q$ is $y=\frac{1}{2}(p+q) x-a p q$. (Do NOT show this. If the chord PQ passes through $(0, a)$ show that $p q=-1$.
(iii) Find the equation of the locus of R if the chord $P Q$ passes through ($0, a$).

Question 4 (12 marks)
(a) Solve $\frac{3}{x-2} \leq 1$
(b) Find the coordinates of the point P that divides the interval joing $(-3,4)$ and $(5,6)$ internally in the ratio $1: 3$.
(c) The acute angle between the lines $y=3 x+5$ and $y=m x+4$ is 45°. Find the two possible values of m.
(d) Let $f(x)=\frac{x}{x^{2}-1}$
(i) For what values of x is $f(x)$ undefined? 2
(ii) Show that $y=f(x)$ is an odd function $\mathbf{1}$
(iii) Sketch $y=f(x) \quad \mathbf{2}$

Question 5 (12 marks)
(a) The polynomial $P(x)=x^{3}-2 x^{2}+a$ has a remainder of 3 when divided by $(x+2)$. Find the value of a.
(b) It is known that two of the roots of the equation $2 x^{3}+x^{2}-k x+6=0$ are reciprocals of each other. Find the value of k.
(c) The polynomial $P(x)=x^{3}-2 x^{2}+k x+24$ has roots α, β, γ.
(i) Find the value of $\alpha+\beta+\gamma \quad 1$
(ii) Find the value of $\alpha \beta \gamma \quad \mathbf{1}$
(iii) It is known that two of the roots are equal in magnitude by opposite in sign. Find the third root and hence find the value of k.
(d) A polynomial is given by $P(x)=x^{3}+a x^{2}+b x-18$. Find the values for a and b if $(x+2)$ is a factor of $P(x)$ and if -24 is a remainder when $P(x)$ is divided by $(x-1)$.

Question 6 (12 marks)

(a) Solve $\sin 2 \theta=-\frac{1}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

2

1
$\sin (5 x+4 x)+\sin (5 x-4 x)=2 \sin 5 x \cos 4 x$
(c) By making the substitution $t=\tan \frac{\theta}{2}$, or otherwise, show that $\operatorname{cosec} \theta+\cot \theta=\cot \frac{\theta}{2}$
(d) (i) If $\sin x-\cos x=A \sin (x-\alpha)$, where α is acute, find A and α.
(ii) Hence or otherwise, solve $\sin x-\cos x=\sqrt{2}$ for $0^{\circ} \leq x \leq 360^{\circ}$
(e)

Two yachts A and B subtend an angle of 60° at the base of a cliff.
From yacht A the angle of elevation of the point $\mathrm{P}, 100 \mathrm{~m}$ vertically above C, is 20°. Yacht B is 600 m from C.
(i) Calculate, the the nearest metre, the length of AC
(ii) Calculate the distance between the two yachts to the nearest metre.

Question 7 (12 marks)
(a)

In the diagram, not drawn to scale, O is the centre of the circle.
AT is a tangent to the circle. $\angle O A B$ is $36^{\circ}, \angle C A T$ is $3 x^{\circ}$ and $\angle O C B$ is x°.
Copy the diagram onto your answer sheet.
Find the value of x.
(b) Two chords of a circle, AB and CD , intersect at E . The perpendiculars to $A B$ at A and $C D$ at D intersect at P . The line PE meets BC at Q , as shown in the diagram.
Copy the diagram onto your answer sheet.
(i) Explain why DPAE is a cyclic quadrilateral.
(ii) Prove that $\angle A P E=\angle A B C$
(iii) Deduce that PQ is perpendicular
 to BC .
(c)

$A B$ is a diameter of a circle $A B C$. The tangents at A and C meet at T. The lines TC and AB are produced to meet at P . Copy the diagram and join AC and CB .
(i) Prove that $\angle C A T=90^{\circ}-\angle B C P$
(ii) Hence or otherwise, prove that $\angle A T C=2 \angle B C P$

