DAPTO HIGH SHCOOL

YEAR 11

EXTENSION 1 MATHEMATICS

PRELIMINARY EXAMINATION

2006

Time Allowed – 2 hours (plus 5 minutes reading time)

Directions:

- Attempt ALL questions
- All questions are of equal value
- All necessary working should be shown
- Board-approved calculators may be used

Marks

Question 1 (12 marks)

(a) Differentiate with respect to x

(i)
$$(x^2 - 5x)^4$$
 2

(ii)
$$\frac{2x-3}{5-x}$$
 2

(iii)
$$x^{n^2}$$
 1

(iv)
$$(x^2 - 5x + 7)(3x + 2)$$
 2

(b) Given the function
$$y = 10x^3 - 4$$
. Find the value(s) of x for which $\frac{dy}{dx} = 10$. 2

(c) Find the gradient of the normal to the curve $y = \frac{1}{\sqrt{x^2 - 3}}$ at the point (2, 1) 3

Question 2 (12 marks)

(a) If α and β are the roots of the quadratic equation $2x^2 - 3x - 1 = 0$. Evaluate (i) $\alpha + \beta$

(ii)
$$\frac{1}{\alpha\beta}$$
 1

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 2

(b) Given that
$$x^2 + 7x - 3 \equiv a(x+1)^2 + b(x+1) + c$$
, find the values of a, b and c 3

(c) Show that for
$$kx^2 + 21x + m = 0$$
, the roots are equal if $l^2 = km$ 2

(d) Solve
$$x^6 + 26x^2 - 27 = 0$$
 3

Marks

1

Question 3 (12 marks)

(a)	For the parabola $x^2 = 10y$, find			
	(i)	the coordinates of the focus	1	
	(ii)	the equation of the directrix	1	
	(iii)	the length of the latus rectum	1	
(b)	Find	the coordinates of the focus of the parabola $x^2 = 8(y - 1)$	2	
(c)	A curve has parametric equations $x = \frac{t}{2}$, $y = 3t^2$. Find the cartesian equation for this curve.			
(d)	The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The equation of the normal to the parabola at P is $x + py = 2ap + ap^3$ and the equation of the normal at Q is similarly given by $x + qy = 2aq + aq^3$.			
	(i)	Show that the normals at <i>P</i> and <i>Q</i> intersect at the point R whose coordinates are $(-apq[p+q], a[p^2+pq+q^2+2])$.	2	
	(ii)	The equation of the chord <i>PQ</i> is $y = \frac{1}{2}(p+q)x - apq$. (Do NOT show this. If the chord PQ passes through (0, <i>a</i>) show that $pq = -1$.	1	
	(iii)	Find the equation of the locus of <i>R</i> if the chord <i>PQ</i> passes through $(0, a)$.	2	

Question 4 (12 marks)

(a) Solve
$$\frac{3}{x-2} \le 1$$
 3

- (b) Find the coordinates of the point *P* that divides the interval joing (-3, 4) **2** and (5, 6) internally in the ratio 1 : 3.
- (c) The acute angle between the lines y = 3x + 5 and y = mx + 4 is 45°. Find the **2** two possible values of *m*.

(d) Let
$$f(x) = \frac{x}{x^2 - 1}$$

(i) For what values of x is $f(x)$ undefined? 2
(ii) Show that $y = f(x)$ is an odd function 1

(iii) Sketch
$$y = f(x)$$

2

Question 5 (12 marks)

	$15 \operatorname{dividua} 0 \operatorname{y} (n - 1).$		
(d)	A polynomial is given by $P(x) = x^3 + ax^2 + bx - 18$. Find the values for <i>a</i> and <i>b</i> if $(x + 2)$ is a factor of $P(x)$ and if -24 is a remainder when $P(x)$ is divided by $(x - 1)$.		4
	(iii)	It is known that two of the roots are equal in magnitude by opposite in sign. Find the third root and hence find the value of <i>k</i> .	2
	(ii)	Find the value of $\alpha\beta\gamma$	1
	(i)	Find the value of $\alpha + \beta + \gamma$	1
(c)	The polynomial $P(x) = x^3 - 2x^2 + kx + 24$ has roots α, β, γ .		
(b)	It is known that two of the roots of the equation $2x^3 + x^2 - kx + 6 = 0$ are reciprocals of each other. Find the value of <i>k</i> .		
(a)	1	polynomial $P(x) = x^3 - 2x^2 + a$ has a remainder of 3 when divided + 2). Find the value of <i>a</i> .	2

Question 6 (12 marks)

(a) Solve
$$\sin 2\theta = -\frac{1}{2}$$
 for $0^\circ \le \theta \le 360^\circ$ 2

(b) By expanding the left hand side, show that
$$\sin(5x + 4x) + \sin(5x - 4x) = 2\sin 5x \cos 4x$$

(c) By making the substitution
$$t = \tan \frac{\theta}{2}$$
, or otherwise, show that
 $\csc \theta + \cot \theta = \cot \frac{\theta}{2}$

(d) (i) If
$$\sin x - \cos x = A\sin(x - \alpha)$$
, where α is acute, find A and α . 2

(ii) Hence or otherwise, solve
$$\sin x - \cos x = \sqrt{2}$$
 for $0^\circ \le x \le 360^\circ$ 2

(e)

Two yachts A and B subtend an angle of 60° at the base of a cliff. From yacht A the angle of elevation of the point P, 100 m vertically above C, is 20°. Yacht B is 600 m from C.

(i)	Calculate, the nearest metre, the length of AC	1
(ii)	Calculate the distance between the two yachts to the nearest metre.	2

Marks

Question 7 (12 marks)

(a)

(c)

In the diagram, not drawn to scale, O is the centre of the circle. AT is a tangent to the circle. $\angle OAB$ is 36°, $\angle CAT$ is $3x^\circ$ and $\angle OCB$ is x° . Copy the diagram onto your answer sheet. Find the value of *x*.

1

2

1

 (b) Two chords of a circle, AB and CD, intersect at E. The perpendiculars to AB at A and CD at D intersect at P. The line PE meets BC at Q, as shown in the diagram.
 Copy the diagram onto your answer sheet

Copy the diagram onto your answer sheet.

- (i) Explain why DPAE is a cyclic quadrilateral.
- (ii) Prove that $\angle APE = \angle ABC$
- (iii) Deduce that PQ is perpendicular to BC.

3

AB is a diameter of a circle ABC. The tangents at A and C meet at T. The lines TC and AB are produced to meet at P. Copy the diagram and join AC and CB.

- (i) Prove that $\angle CAT = 90^\circ \angle BCP$
- (ii) Hence or otherwise, prove that $\angle ATC = 2 \angle BCP$

2

3